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Abstract. We consider a second order nonlinear differential equala.ti‘on of. the f(l}‘pm
u”’+T@)U(n) = 0. In Part I, we prove some monotonicity properties of nonnega-
tive solutions. In Part II, using the results of Part I, we deal with the question of
uniqueness of eigenvalues of some associated boundary value problems. Motivations

and statements of results are given in the first sections (Sections 1 and 6) of each
part.

Part I}

N <

1. Statement of results. Some results in recent mathematical }physics
literature can be formulated in terms of singular boundary value problems

on (—wx) a<t< o (< o) involving a differential equation of the
form

(1.1) w"'+T(t)U(u) =0,
and interest lies in solutions u(t) on (a, ») such that

(1.2) #(a) =limu(t) exists and «%(f)>wu(a) on (a,w).

[ B

For example, suppose that one boundary condition is

(1.3) u(t) >0 ast—a
and that
(1.4) 0Zu(f)=0 on (a,on).

!

* This research was supported in part by NSF Grant No. MCS878-01101.
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We shall assume that the functions T'(¢), U(u) satisfy
(1.5) 0<TeCa,w) and Uel[0, o),
(1.6) TI'(t) is strictly monotone on (a, w).

For examples of such problems, see [1], [3], [4], [6], [8], [9], [10]
and earlier references in these papers. A related type of problem was
recently discussed by J. Serrin in a lecture at Johns Hopkins University.
In [6], the problem is formulated as above; in the others, the results
concern problems for the partial differential equation

(1.7) dv+Uw) =0,

which yield radially symmetric solutions #(r) 20 on 0 < r< B (< o0),
where r = |z|, z e R*, and n > 2,

(1.8) 0<?2—->0 asr=|z] >R (< ).

In n>2 or » =2 and 0 < R< oo, the change variables
R
w(t) =o(r), ¢ =fs“”ds
r

transferms (1.7)—(1.8) into (1.1), (1.3)—(1.4), where 0 < r < R corresponds
to co>1>0 (and T(f) = const/t*" "D if > 2). Tf n =2 and R
= oo, the change of variables

1
u(t) =v(r), t= [ds/s = —logr

transforms (1.7)—(1.8) into (1.1), (1.3)—(1.4), where 0 <7 << R = oo cor-
responds to co>1> —oo (and T = ¢~ 1),

Papers [1], [3], [6], [8], [9], [10] give existence theorems for the
problems treated (with (a, w) = (0, o0) or B = o0), and in [1], [3] and
[10] it is also verified that the solutions constructed satisfy

(1.9) wW({#) =0 ona<i<w.

Existence in these three papers is proved by considering an appropriate
problem in the calculus of variations, while the radial symmetry and the
analogue of (1.9) is obtained from symmetrization principles. In [4},
it is shown, by the use of maximum principles, that if U e ' and
v € C¥{|z] < R< oo} is a solution of (1.7)—(1.8) with »(x) > 0 for |z|< R,
then o is radially symmetric and satisfies the analogue of (1.9). It turns out
that the solutions in [6] also satisfy (1.9). In fact, the main result to be
proved in Part I is the following

THEOREM 1.1. Let T(t), U(u) satisfy (1.5)—(1.6). Let u = u(t) be a sol-
ution of (1.1) satisfying (1.3) and (1.4).
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(i) Then either (1.9) holds or there exists a t-value t = t,, a< t, < w,
such that

(1.10) w(@)=0 on (a,t,) and W ({t)<<O0 on ({, w);

in which case, there are t-values § and t°, a < f < 1° < ty, such that

111) «#'>0 on (8,1, u' =0 on [1t], and w(f) = u(w).
(i) If w = oo, or f T'?dt = oo or, more generally, if

(1.12) lim inf «'2/T =0 as t—»> w,

then (1.9) holds.

(iii) Also, if solutions of (1.1) are uniquely determined by initial con-
ditions (e.g., if U(u) is locally uniformly Lipschitz continuous), then u' > 0
can be replaced by u' >0 in (1.9) and (1.10) in assertions (i) and (ii).

Note that, in (i) and (ii), there is no assumption on U(u) except
continuity, and the only assumption on # is that it attains its minimum
at ¢t = a. The example in [4], where (1.1) is

(113) w"+(u—1) =0 and % =1—cost, a=0, w =00
(i.e., T'(t) =1 and U(u) = w—1) shows that strictly cannot be omitted
in hypothesis (1.6).

COROLLARY 1.1. Let n>2 and U(v) e C°[0, o). Let a >0 and 0
< o(r) e C*(a, ) be a nondecreasing function or, more generally, let

(1.14) r*®~Do(r)  be strictly monotone.

Let v =v(r), r = |z| and 2 € R", be a radially symmetric C*-solution of
(1.15) Av+-o(lz)) U(v) = 0

on (0<) a< |2| < oo satisfying

(1.16) 0£v>0 and v—>0, 7r—>oo.

Then dvjdr <0 on a<r<< oo.

This is not contained in [4] since U does not satisfy a Lipschitz
condition and it is not assumed that » > 0; cf. [4], Section 2.3.

Remark. Theorem 1.1 implies that the solutions y,, where
kE=0,1,..., in Theorem 3.1 of [6], have nonvanishing derivatives to
the right of their largest zero.

The same is true for Theorem 3.2 if the condition »’ < 0 is strength-
ened to r'< 0 and if ¢ is locally uniformly Lipschitz.

For comparison of Theorem 1.1 and a result of [4] on ordinary dif-
ferential equations, we state the following consequence of Theorem 3
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in [4]. According as T'(?) is decreasing or inereasing, it may supply addition-
al information on (a, %) or on ({,, w) in (1.10) or (1.11).

THEOREM 1.2. Let T'(t), U(u) satisfy (1.5) and suppose that T (1) is
nonincreasing and that U(u) is locally uniformly Lipschitz continuous.
Let u(l) be a solution of (1.1) on (a, w) satisfying

(1.17) u>0 on (a,w) and wu(a+0)=0.
If w'(t) = 0 for some t € (a, w), then there i8 a t-value t, such that
(1.18) w'>0 on (a,t), u'(t) =0,
) to
(1.19) [rra< [ TRar < oo
to a

also, if the second integral is finite and
Y to
(1.20) [rtar = [ T"a (< ),
to a

then T'(t) is a constant, — o0 < a << w < o0, and u s symmelric with respect
ot =1,.

Notice, in contrast to Theorem 1.1, this theorem assumes a Lipschitz
condition on U, replaces (1.6) by T s nonincreasing, and (1.3)-(1.4) by
(1.18). We indicate the proof of Theorem 1.2 in Section 5 below. When
(1.1) is a linear equation U(u) = and T(¢) € C°[a, w], where —oo
< a< o< o0, Theorem 1.2 is an immediate consequence of the Sturm
comparison theorems; cf., e.g., [7], p. 531.

2. Proof of Theorem 1.1(i). Suppose, if possible, that (1.9) does
not hold, so that there is a t-value ¢ = ¢, such that

(2.1) w'(l)<0 and ae<fi<o

(hence u(?,) > 0). Then there exists a t-value ¢t ={,,

(2.2) 0<ity<t, and wu(l) =maxu(t) on (a,t,],
so that u(f,) > 0 and

(2.3) W' (L) = 0.

We have the following two possibilities:
Case (1). There exists a smallest t-value ¢ = {,,

(2.4) t,<t, and w'(f) =O0.
Case (2). Or t, does not exist, so that

(2.5) ()< 0 ont<i<o.
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Consider the conjugate energy, i.e., the Lyapunov function
(2.6) H(t) =v'22T+V(u), where v =u(t) and ¢< < o,
(2.7) V(u) = f U(s)ds.
0
Then H(t) € (°(a, w) is locally of bounded variation. In the sense of
Riemann-Stieltjes integration, (1.1) implies that

(2.8) dH (t) = (»'%/2)d(1/T),

so that H is monotone.
For sake of definiteness, assume that T' is strictly decreasing, so that
H is nondecreasing. (The case that T is strictly increasing is similar.)
Let uy = u(t,). Then %'(¢,) = 0 and (2.6), (2.8) show that
(2.9) H(t) =u22T+V(u) < V(u) for a<ti<t,.

In particular,

(2.10) V(u@) < Viu) for a<i<t,,
so that, by (2.2),
(2.11) V(u)<< V(uy) for 0 <<u <<y,

On Case (1). Assume the existence of ¢ =1, as in Case (1). Then,
a similar argument gives V(u(1)) < V(u,) for a<t<t, if u, = u(t,).
In particular V(u,) < V(us). But 0 <u,< %, and (2.11) imply that
V(u,) < V(u,). Hence V(u,) = V(u,). It follows from (2.3), (2.4) and
(2.6) that H(t,) = H(?,), hence H(t) = H({,) on t, < t < f,. Consequently,
(1.6) and (2.8) show that 4’() =0 on t, <t < {?,. In particular, 4, = %,.
But the definitions of 7, and ¢, give u,> u(#,) > u,. This contradicts
he assumption that ¢, exists, so that Case (1) cannot oceur.

On Case (2). The arguments just completed show that (1.10) holds
in Case (2). In order to verify the conclusion (1.11), let %(w) = limu(t)
as t - w, so that «(¢,) > #(w) > 0. Let § be the largest’t-value on a <t
< t, such that «#(f) = u(w) (where it is understood that #(a) = 0). Let
t = 1° be the smallest ¢t-value, 8 < t<1,, such that «(8) << u(°) = u(,).
The arguments above, in which we replace ¢ by —¢ and a by o
(and o by ), imply (1:11). This completes the proof of (i).

3. Proof of Theorem 1.1(ii). First assume (1.12). We shall show
that (1.9) holds. If not, (1.10) holds. Let ¢, = @ and u, = lim«(t) as
t - w, and H(w) = V(u,). Arguing as in Case (1) of the last section, it
follows that V(u,) = V(u,) and that H(f) = H(u,) for {, <t << oo. We
now obtain the same contradiction as in Case (1) above.
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Note that if
(3.1) >0 and «%'<<0 for ¢ near o,

then limu(t), ¢ > o, exists. Thus, from (2.6) and (2.8), it follows that
H, hence #'2/T, has a limit, possibly oco. If

(3.2) w7 -0 ast—ow

does not hold, there is a constant ¢ > 0 such that —u’ > ¢T""* for ¢ near .
By (3.1),

(3.3) — [ w'dt < oo, hence [ T @)at < .

Thus the proof of (ii) will be complete if we verify
PROPOSITION 3.1. Assume (1.5) with o = oo and T is monotone. Let
%(t) be a solution of (1.1) satisfying (3.1). Then (3.2) holds.

Proof. From the argument leading to (3.3), we can suppose that
T > 0 is nonincreasing to 0 and that

=] (=]
(3.4) [ Iat< o, hence [ Tdt< oo.
Equation (1.1) and the boundedness of 4 shows that |u"’| < CT for

(=]
large ¢t and some constant C. The last part of (3.4) implies that f [’ | dt
< o0, 80 that 4’ has a limit as ¢ — oo, which is 0 by (3.3). Hence

0K — /[T <C [ T(T M ))a<C [ T(s)ds,
4 ¢

since T is nonincreasing. This proves (3.2).

4. Proof of Theorem 1.1(iii). Let u(t) be a solution of (1.1) sat-
isfying %’ > 0 on some open interval (e, f,) and that »'(t*) = 0 for some
t* € (a,t,). Then T > 0 implies that U(u*) = 0, where u* = u({*). For
otherwise, % has a strict maximum or minimum at ¢ = t*, contradicting
w’ > 0. Consequently, %(t) = 4* by the uniqueness of solutions of (1.1).
This is impossible if «(a) << #(f,), so that 4’ > 0 on (a, t,).

5. Proof of Theorem 1.2. We merely indicate the proof. Since
solutions of (1.1) are uniquely determined by initial conditions, we can
suppose that T e C' and that [ T"?dt< oco. For otherwise, we approxi-

mate (a, w) by compact intervals and T by smooth functions. The change
of variables

w(t) =v(x) and = fT”z(s)ds



Monotonicity of nonnegative solutions 109

changes (1.1) into
d*v/dz®+b(z)dv/drv+T(v) =0, where b(z) =T'2T*" <0.

This makes it clear that Theorem 1.2 is a consequence of Theorem 3 in [4].

Part 1II

6. Statement of results. Consider the differential equation
(6.1) w'+T@H)U(u) =0,

where —oo<<a<i< w< co. A number of singular or nonsingular
boundary value problems for (6.1) can be formulated as follows: Let
% = u(t, 1) be a solution of (6.1), say, determined by a condition at ¢ = a.
For example, if (a, ) is replaced by [a, w), —o < a< o < o0, We can
let u(t, ) be determined by

(6.2) =0 and 4 =41(>0) att=a.

The boundary value problem involves the question of existence and uni-
queness of A-values such that «(f, 1) satisfies a condition at t = 0, e.g,,
a smallness or L*-condition at t = w, or if (e, w) is replaced by (a, ],
—oo g a< w<< oo, the boundary condition can be

(6.3) =0 or %' =0 atit=o0.
Often, an auxiliary condition is also imposed, namely,
(6.4) % has exactly % zeros on (a, w),

where £ = 0,1, ..., is fixed. For analogous formulations of some singular
boundary value problems, see, e.g., [6] and earlier references there.

In [2], Coffman discusses a uniqueness question for a more general
equation, but when (a, w) is replaced by [a, ] and the corresponding
boundary conditions are %(e) =%(w) =0 or wu(a) =u'(w) =0. His
results are most complete for an equation of the form (6.1). The following
is an improvement of his result (with a somewhat neater and more natural
arrangement of his proof, but with the additional assumption that T e (2,
instead of T e C* and T~*? is concave).

THEOREM 6.1. Let T(1) € C*(a, w), —oo< a< 0 < oo, satisfy
(6.5) T>0, T'<o0, (T™'go,
and let U(u) e O'(—co, co) satisfy
(6.6) UW0)=0 and U,>Uj/u for u #0,
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where U, = 0U|0u. For a fized 2, 0 <A< A (< o), let u = u(t, 1) be
a solution of (6.1) on (a, w) such that u,u € C'[(a, ») X (0, A)],

(6.7) u>0 fort(>a) mnear a (for fixed 1),
(6.8) limsup (w; %" —u,u) > 0,
t—»a

(6.9) limsup T[4 u; 4 (TU +T' o' [2T)u,]1 > 0.

t—a
Then the zeros of w, = ou[dA, if any, cannot cluster at t = a. Assume that
(6.10) u, >0 fort(>a) mnear a (for fized 2).
If the ordered zeros of u(-, 4), if any, are
(6.11) (@<) 4(2) < ty(2) < ...
then t,(A) satisfies
(6.12) dt,(A)]dA < 0

on its interval of existence. Furthermore, the zeros of w'(-, A), if any, are
simple (hence isolated) and do not cluster at t = a. If (a <) 8,(1) < 8,(2) < ...
are the ordered zeros of w'(-, 1), then

(6.13) (a<<) 8,(2) < 8 (A) < 85(A) < vy
and s,(A) satisfies
(6.14) ds, (A} JdA < O

on its interval of existence. In pa rticular, for any b € (a, w), there is at mos
one A-value such that v = 0 [or v’ = 0] at t = b and u has exactly k zeros
on (a,bd), £t =0,1,...

In Coffman’s results (in his Theorem 2.4 and the remarks following it),
a above is replaced by a nonsingular point at which (6.2) holds, so that
conditions (6.7)—(6.10) are trivial. Also, he assumes that U(u) is an odd
function and that U/u > 0 for v # 0. (He makes a redundant assumption
(t’T(t))’ > 0, which is implied by the other conditions of (6.5), in which
(T~'%)"” < 0 is replaced by an assumption equivalent to T~2 is concave.)

COROLLARY 6.1. In addition to the hypothesis of Theorem 6.1, assume
that U(u)/u > 0 for u # 0 and that y, J are nonnegative constanis, y -+ 6 > 0.
When it exists, let t = s} (4) be the unique t-value on (a, s,(4)] and t = s (1),
k> 1, the unique t-value on [1,_,(4), 8,(A)], where

(6.15) pu’ (8, A) — Su(t, ) = 0.
Then, on ils interval of existence, sy (A) satisfies

(6.16) *(A)dr< 0.
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In particular, if a < b < w, then there is at most one A-value such that (6.15)
holds at t = b and u has exactly k zeros on (a,b), & = 0,1, ...

The proof of this corollary is similar to the proof of (6.14) and will
be omitted.

We shall not consider the more interesting situation where (7-'2)"*
>0

Remark. On (6.8)—(6.9). As remarked above, (6.8)—(6.9) is trivial if
a is a (finite) nonsingular point and (6.2) holds. It may also be possible
to verify (6.8)—(6.9) in some singular cases. For example, assume that

[rrat = o and [ BT N6T° —T" AT TR dt < oo,

that U,(0) = —¢? with ¢> 0, and that U(u)/u € C'. Then (6.1) has
a family of solutions u (¢, 4) satisfying, as ¢ — q,

w ~AT Yexp and u' ~ AT (1 —T'/4AT**)exp,

where
exp = exp(—ch"z(s)ds), a € (e, w) fixed.
¢
These asymptotic formulas can be differentiated with respect to A. Thus, for
example, (6.8)—(6.9) hold with limsup > 0 replaced by lim = 0 if
(T*|T° —T'|T*?)(exp)? -0 as t—a.
(For example, let ¢ = 0 and T ~1/i2, T ~ —2/8, T ~6[t* as t - 0.)

7. Proof of Theorem 6.1. We can suppose that «(-, 1) has some
zeros, enumerated as in (6.11). It follows from Theorem 1.1 (iii) in Part I
above that #'(-, 1), hence

(7.1) w = g(t)w'(t,A), where g =T"">0,

has at most one zero on (a, ¢,(4)) and on each of the intervals {t,_, (1), t;(4)).
Let the zeros of w (or #') be (a<<) 8;(4) < 8,(4) < ..., 80 that (6.13) holds.
It is easy to verify, from (6.1) and (7.1), that w satisfies the differential
equation

(7.2) w'+[T() U, (u)—g"()/g(t)]w =0, where u = u(t,A).
We write (6.1) as a linear differential equation

(7.3) w +TE[U(u)/ulu =0, -where v = u(t,4).

Differentiation of (6.1) With respect to A shows that

(7.4) v = uy(, A)
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satisfies
(7.5) v'+T@#)U,(w)v =0,  where v = u(t,1).

Since ¢’ <0 in (7.2), the Sturm comparison theorem (cf. [5], p.
333-337) applied to (7.2), (7.5) shows that w has a zero between any pair
of zeros of v. Hence the zeros of » = 4, cannot cluster at ¢ = a and, if any,
can be ordered as (e<) 7;(%) < 74(4) < ... Differentiation of (7.1) gives

w = —gTU+g'v'.
From this, it follows that (6.9) is equivalent to

(7.6) lim sup (wv' —w’'v) > 0.

t—>a

Hence ¢'' <0, (7.2), (7.5) and the Sturm comparison theorem show that
the zeros 7;(4) of v satisfy

(7.7) 8;(4) < 7y(4),

and every interval [z;_,(4), 7;(4)) contains a zero of w.

Similarly, it follows from (6.8), (7.3), (7.5), U, > U/u and the Sturm
comparison theorems that if # has at least & zeros, then v has at least
% zeros and

(7.8) 7,(4) < 4(4),

and that » has at least one zero on every open interval (tj_l(l), t,(ﬂ.)).
Furthermore, if # and » have the same number of zeros on (a, t*) for some
t*, then

(7.9) wlu>vv at i =1t*,

Inequalities (7.7), (7.8) and the remarks following them imply that
(7.10) (e <) 81(A) < T1(A) < 1, () < 8,(A) < 72 (A) < B (A) < ..
Consequently,

(7.11) (—1)*s’'>0 and (—1)fv>0 att=1,(4).

By differentiating u(f,(1), 4) = 0 with respect to 1, it is seen that dt,/dA
= —uo(t,, 4)/u’(t,, A) < 0. This proves (6.12).

In order to verify (6.14), let o,(4) be the largest zero of o’ on (a, 7,(1))
and o, () the largest zero of v’ on (-rk_l(}.), rk(l)),' so that (—1)¥*'v(q,, 1)
> 0. From (7.9) and (7.10), it follows that

(7.12) wiu>0 att=o,(d).

Hence %'(g,, 1) > 0, i.e., 0,(1) < 8,(4). Also 4'[/u << 0 on (8,,%) > (7q, 1),
go that #; < g4 < 75, where % < 0. Thus (7.12) gives %' < 0 at t = 0,(4),
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so0 that ¢,(4) < s,(4). Continuing this argument, it follows that
(7.13) 0,(4) < 8,(A), hence (—1)¥v’(s,,4)>0.

The condition U, > U/u in (6.6) means that U/u is increasing for
%4 > 0 and decreasing for « > 0. Hence either U > 0 on (0, oc), or U< 0
on (0, oo), or there is a u-value u, such that U < 0 on (0, %,) and U > 0
on (#,, o0o0). An analogous assertion holds for —oo > % > 0. Since %’ has
exactly one zero s,(1) on (e,?,) and exactly one zero s,(1) on (f,_,, ),
a simple argument involving convexity shows that U >0 or U< 0 at
% = u(s,, A) according as u(s,, 1) > 0 or < 0. Since (—1)*+'u(s,, 1) > 0,
we have (—1)**' U > 0 for » = u(s,, A). Hence

(—1)fu"” = (=1 1TU >0 at t = s,(A).

Differentiating u'(s,(1), 2) = 0, we get ds,(2)/dA = —v' (8, A)/u" (8;,4)
<< 0. This is (6.14), and completes the proof.
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