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In the mid-sixties, Vladimir Arnol’d stated remarkable conjectures in sym-
plectic geometry, related to celestial mechanics and the Poincaré-Birkhoff
fixed point theorem. The first of these problems ([Al], Appendix 9) was
solved at the end of 1982 by Charles Conley and Eduard Zehnder [CZ82],
using rather elementary ideas. Since then, much progress has been accom-
plished in the field, with the help of various techniques, some rather hard,
some much softer. We shall concentrate on the latter, applied first to the
Arnol’d conjectures, and then to a related conjecture of Alan Weinstein —
first proved by Claude Viterbo by a quite different method (V86).

Acknowledgements. 1 wish to thank the organizers of this semester, and
especially Feliks Przytycki, whose kind invitation enabled me to fall in love
with Poland. The idea of the proof of Viterbo’s theorem described below
occurred to me while in Warsaw. Conversations with Krystyna Ziemian and
Sebastian Van Strien were very helpful.

1. Work on the Arnol'd conjectures

1.1. Phase functions on compact manifolds

A phase function on a manifold M is a smooth function M xE — R,
where E denotes a finite-dimensional real vector space. Such an F is called
quadratic when there exists a non-degenerate quadratic form Q on E such
that the mapping

M x E 3(a, v) ﬂ%vii(a, v)—dQ(v) eE*

is bounded. The following result is classical (see, for instance, [ChZ83],
pp. 82-95): -

[143]
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THEOREM. The number of critical points of a quadratic phase function on a
compact manifold M is greater than the cup-length cl(M) of M in any case,
and at least equal to the sum SB(M) of its Betti numbers when none of these
critical points is degenerate.

ExaMPLE. cl(T") = n and SB(T") = 2"

1.2. First statement and proof of the Conley-Zehnder theorem

Let T*R" = R" x(R"* be endowed with its canonical vector space
structure. By a lattice Z of T* R" (resp. R"), we mean a discrete subgroup
such that the quotient T* R"/Z (resp. R"/Z) is compact—hence diffeomorphic
to a torus.

THEOREM (CZ82). Given a lattice Z of T*R", let H: T*R" x[0,1] =R
be smooth and Z-periodic with respect to the variable (q, p)€R" x(R")*
= T* R". Consider the hamiltonian system

(1) q = _aa—II;I(q’ D, t) and i, = gg(q, D t)

and the boundary condition

2 q(0)=4q(1) and p(0) =p(1).

Then, one can find at least 2n+ 1 solutions of (1)+2) which cannot be deduced
from one another by Z-translation, and at least 2*" if (1){2) has no degenerate-
solution.

Proof.”We shall construct a quadratic phase function F¥ on T*R"/Z,
the critical set of which is in 1-1 correspondence with the mod Z solutions of
()~H2).

Given a positive integer N and arbitrary points v; =(q;, p;)) € T* R",
0<i<N, let v, (v) =(qf'(v), pf1(v))eT*R", 0<i< N, be given by

i+ 1 [+ 1
oy (v) = (q (%) p ( ;VJ; 1))

. i i
where (g, p) satisfies (1) and (q ( N+ 1), p ( Nt 1)) = ;. Choosg N large
enough for each v; —(qf',(v), p;) to be a diffeomorphism (this is possible,
because H is Z-periodic). :
Let V denote the set of all points v = (v, ..., vy) €(T* RH¥*!, and let f¥
be the (smooth) function on V given by

1
fH () = ¢ pdg+ [H(c, (1), t)dt,
é, 0
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where the path c,: [0, 1) = T* R" and the loop ¢, are defined as follows:
ot
" IN¥I' N+

(e}l

— the loop ¢, is obtained by adding “corners” to ¢, as in Fig. 1, so as
to close it.

), ¢, 1is the solution of (1) such that

In other words,

N j:l N+1
ey =3 | (ct(pdg)+H(c,(0), )de)+ ¥ py(g;— ' (v;-1)
j=0_J _ j=1
N+1

where qy.; =qo and py+y = po.
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From this and the definition of ¢,, we deduce that

N

(3) df” (v) = zo:((Pfl+ 1 (Uj) —'Pj+ 1)quI'J+1 (vj)+(qj+ 1= Q?H (Uj))dpj+ 1)-

Therefore, by our choice of N, v is a critical point of f# if and only if - v;,,
=¥, (v) for 0<j <N and vy, (vy) = 0o, ie. if and only if ¢, satisfies

(DH2). .
Let W denote the set of all points

(x’ y) = ((x01 yO)s ceey (xN, yN)) E(T* R")N+l,

and let F¥ = fHohH: W—R, where h¥: W >V is defined as follows: for
each (x, y)eW, h¥(x, y) =v is given by

@) (x0, o) = (4 (vo), Po)

and  x; =gl (v)—qf (vj-,), y; = pi—Po, 1 <j<N.

10 — Banach Center t. 23
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By our choice of N, k¥ is a well-defined smooth diffeomorphism. Since F¥ is
Z-periodic with respect to (xo, yo), it induces a smooth function (T* R"/Z)
xE =R, where E = (T*R"", and we just have to show that this phase
function F¥ is quadratic. Let F° and F° be defined in the same fashion (with
the same N) for H = 0. Clearly,

N
Fo(x, y).= Zijj-
1

Therefore, F°. is of the form (a, v) = Q(v), where Q is a non-degenerate
qugdrati~c form on E, and our theorem will be proven if we can show that
d(F?—F%: W - W* is bounded. Now, if we set hf(x, y) = v, (3)H4) yield

o N j
d(FH‘FO) = Z (P;’H(Uj)_l’j)dzxk
j=0 0
N .
+ Y (gi—qfs 1 ) d o+ y)+(g0 — 45 (vo)) dyo,
j=1

which is bounded, because H is Z-periodic.

The fact that non-degenerate critical points of F¥ correspond to non-
degenerate solutions of (1)+(2) is an easy exercise (this is one of the advan-
tages of our method, introduced in [Ch 84]). =

1.3. Symplectic formulation of the same result

Recall that a symplectic form on a manifold X is a closed 2-form ¢ such
that the bilinear form o (x) is non-degenerate for every x € X (thus, X must be
even-dimensional).

ExampLEs. On the cotangent bundle T* M of a manifold M, define the
Liouville form pdq to be the 1-form such that a*(pdq) = a for every 1-form a
on M (viewed as a mapping M — T* M on the left-hand side). The 2-form
d(pdq) is symplectic; it is called the canonical symplectic form on T* M.

A standard symplectic form on T?" is a 2-form w such that, for some
lattice Z of T*R" and some smooth diffcomorphism g: T* R"/Z — T?",
(gomn)* w = d(pdq), where n: T* R" = T* R"/Z denotes the canonical projec-
tion.

An isotopy of a manifold X is a family (g,)o<,<1 Of smooth diffeomor-
phisms of X such that g, =Id and that (¢, x) —=g,(x) is smooth. Such an
isotopy (g,) is determined by its infinitesimal generator, which is the family

(d)o<:<1 Of vector fields on X given by . = g,09,. Given a symplectic

-9
dt

form ¢ on X, an isotopy of (X, o) (or, simply, of o) is an isotopy.(g,) of X
such that g¥ o = o for every t, or, equivalently, such that the Lie derivative
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L; o equals zero for every t; in other words, by the homotopy formula, the

interior product g, o is a closed 1-form for every t. If g, o is exact for every
t, isotopy (g,) is called hamiltonian; one can then choose a smooth family
(H)o<:<1 of smooth functions on X, called a hamiltonian of (g,), such that

5) g, Jo =dH, for every t.

ExaMmpLEs. An isotopy (g,) of T* M is hamiltonian (for the canonical
symplectic form d(pdq)) if and only if g (pdq) — pdq is exact for every t.

If X=T*R" and o =d(pdq), (5) is equivalent to g,(x) =(q(t), p(¢)),
where (q, p) satisfies (i](O), p(0)) = x and (1), setting H(q, p, t) = H,(q, p);
hence, the following formulation of Theorem (1.2) (the link with the
Poincaré-Birkhoff theorem is described in (Al), Appendix 9, and — painfully
— detailed in [ChZ83]):

THEOREM. For each hamiltonian isotopy (g,) of a standard symplectic form
on the 2n-torus, g, has at least 2n+1 fixed points x such that the loop
t —g,(x) is homotopic to a point, and at least 22" if none of these fixed points
is degenerate.

One of the Arnol'd conjectures is that this is still true for an arbitrary
symplectic form on a compact manifold M — replacing 2n+1 by cl(M)+1
and 22%, by SB(M). This has been proven by Barry Fortune and Alan
Weinstein (FW 84) for M = CP" (equipped with its standard K#hler symplec-
tic form), and by Jean-Claude Sikorav (S 83) and Andreas Floer (F 84) for
large classes of symplectic manifolds admitting compatible riemannian struc-
tures with non-negative sectional curvatures (these classes include all surfaces
of positive genus). In (1.5) below, we shall sketch a very elegant proof of such
a result, again due to Sikorav (S 85). In the general case, Mikhael Gromov
(G 85) and Andreas Floer (F 86) use Gromov’s theory of holomorphic
curves, but this is too hard a work for us...

1.4. Lagrangian intersections

THEOREM (Ch83). Let M denote the n-torus T" = R"/Z", and let O, be
the zero section M x {0} of T* M = M x(R"*. For every hamiltonian isotopy
(9) of (T* M, d(pdg)), there are at least n+1 points in Oy Ngy(0y), and at
least 2" if all of them are transversal intersection points.

Proof. As |)g,(0y) is compact, multiplying a hamiltonian of (g,) by a
t

bump function, we may assume that (g,) has a compactly supported hamiltonian
(d,). Define H,(q, p) =H(q, p,t) by H = H,0oP, where P: T*R" > T*T"
denotes the canonical covering projection. Then, our problem is to count the
mod(Z" x {0}) solutions of (1) which satisfy

(2) p(0) = p(1) = 0.
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Now, our hypothesis on (H,) allows us to do this exactly as in (1.2), except
that here v, lies in R” x |0}, hence py = yo = py+, = 0 and
N

3)  dff @) =Y ((p (vj- 1) —pj)daf (v;- 1)

1
+ (Qj - ‘I;I(Uj— 1) de)+ Plfv’+ 1(vN) dq;vl+ 1 (vy).

From this, it is clear that O, Ng,(0y) is in 1-1 correspondence with the
critical set of the quadratic phase function F¥ on M, hence our result by
Theorem (1.1). =

Helmut Hofer (H 84) proved that this result can be extended from the
torus to an arbitrary compact manifold, but his argument required the
strength of this cheerful giant. A much simpler proof of a somewhat better
result was given by Frangois Laudenbach and Jean-Claude Sikorav (LS 85) a
few months later, via the method described above — with an additional idea.
In (1.5) below, we shall show how Sikorav made this proof about as simple
for a general compact manifold as for the torus, but let us first explain why
Theorem (1.4) is more general — and, in a way, more natural — then
Theorem (1.2): under the hypotheses of Hofer’s theorem (i.e. taking for M an
arbitrary compact manifold in the hypotheses of Theorem (1.4)), if g, is C*-
close enough to the identity, there exists a (unique) 1-form a: M - T* M on
M such that g, (O,) = (M), and the fact that (g,) is hamiltonian implies that
a is exact, since so is g¥(pdq)—pdq (and o*(pdg) = a); thus, in this case,
Hofer’s theorem comes at once from ordinary Morse-Lyusternik—Schnirel-
mann theory for smooth functions on M, since « vanishes precisely at the
critical points of its primitives. To deduce the Conley-Zehnder theorem from
Theorem (1.4), we shall use the following easy

2
ProposITION. For every standard symplectic form w on M = T*", let w be
2
the symplectic form on M x M given by @ = pr¥ w —prf w, where pry, pry: M
x M — M denote the projections. There exists a covering projection P: T* M
=M xM such that Plo,, is a diffeomorphism onto the diagonal AM and that
2
P*w = d(pdq).

Proof. (Ch 83). Let A: (T* RM? - T*(T* R" be the linear isomorphism
given by

(© A(@ P, @, P) = ((‘1—;—" ”*T”) ¥ -p. q—q')).

Clearly, the inverse image of the canonical symplectic form by A4 is pr d(pdq)
—pr¥d(pdq) and A maps the diagonal onto the zero section. Thus, if Z is a
lattice of T*R" and T, = T* R"/Z, we get from A~ a covering projection
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P,: T* T, - Z, x T, such that, denoting by w, the symplectic form on T,
obtained by projecting the canonical form of T*R", we have P% ((f)z)
=d(pdq). Moreover, P, maps the zero section diffeomorphically onto the
diagonal. Now, if h: M — T, is a difftfomorphism such that h* w, = w, then
the diffeomorphism h: T* M — T* T, given by h(a, p) = (h(a), po(T,H™1)
sends one Liouville form onto the other, and the difffomorphism h: M x M

— M2 defined by }zz(x, x') = (h(x), h(x)) sends @ onto &, hence our result
with P =(f)~'oP,0h. u

CoroLLARY. For every standard symplectic form w on M = T*" and every
hamiltonian isotopy (h,) of @, there are at least 2n+1 points in AM N h, (4M),
and at least 2*" if all of them are transversal intersection points.

Proof. If (K,)~is a hamiltonian of (k), the unique isotopy () of T* M such
that h,o P =~Poh, for every t is hamiltonian, with hamiltonian (K, o P). As P
maps Oy N h,(0,,) injectively into h,(4M) N AM, Theorem (1.4) yields our
result. =

The Conley—Zehnder theorem is a particular case of this situation: given a
hamiltonian isotopy (g,) of w, with hamiltonian (H,), we can define a

hamiltonian isotopy (h,) of 65, with hamiltonian (K,: (x, ) H,(y)), by
h(x, y) =(x, g,(y)). As the fixed point set of g, is the 1-1 image of
AM ~ hy (AM) by the (first or second) projection, we just have to remark that
the loops t —g,(x) obtained by the proof of our Corollary are homotopic to
constant loops.

*

1.5. A short account of recent work by Sikorav

Given a symplectic form ¢ on a manifold X, an immersion j of some
manifold L into X is called lagrangian if it is smooth, satisfies j* ¢ = 0, and if
the dimension of L equals half the dimension of X — since o(x) is non-
degenerate for each x, this is the maximal dimension allowing j*¢ = 0.

Following Lars Hormander (H 71), call a phase function F: M xE —R
on an n-dimensional manifold M non-degenerate if the “vertical derivative”

OF
dy F: M xE — E* defined by dy, F(a, v) = E(a, v), admits 0 e E* as a regu-
lar value. Given such a phase function, (dy F)"!(0) = £ is an n-dimensional
submanifold of M x E, and the mapping jr: X = T* M obtained by restrict-

oF
ing the partial differential —: M xE - T* M is an immersion such that

Oa
jE(pdq) 1s exact (in particular, jr is lagrangian).
A lagrangian immersion j: L = T* M is generated by a phase function if
there exist a non-degenerate phase function F on M and a difffomorphism g:
L — 2¢ such that j = jrog.
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1 of the critical set

Remark. Then, j~!(0,) clearly is the image by g~
of F.

ExampLE. Sikorav’s starting point was the following observation, due to
Alan Weinstein: going back to the proof of Theorem (1.4), (3) implies that
the solutions of (1) satisfying p(0) = O are precisely those c, such that (taking
Pis----s Pns 47, ..., qB+1 as coordinates on V) the partial derivatives of f¥
with respect to p; and g} vanish at v for 1 <j < N; moreover, the endpoint
of such a ¢, admits gfI, , (vy) as its g-component, and the partial derivative of
SfH with respect to gH,, as its p-component. In other words, if we compose
F¥ with the diffeomorphism (a, (x;, y)1<j<n) 2(a—ZX;, (X}, Y)1<j<n) Of
R" x(T* R"", we get a function F such that the induced function F on
M x(T* R")" generates the lagrangian immersion gilo,,

Noticing that the canonical embedding of M as O, is generated by a
quadratic phase function — any constant function on M will do ! — the
above remark shows that Hofer’s theorem is a corollary of the following

THEOREM (S 85). Let L and M be two compact manifolds, and let j. L
— T* M denote a lagrangian immersion. If j is generated by a quadratic phase
function, then, for every hamiltonian isotopy (g,) of T*M, so is g,0j. =

The proof of this result is quite simple — see (Ch86) for an account
when M = T". Roughly speaking, the idea is to consider each “jump” in the
proof of Theorem (1.4) separately.

(S 85) contains a wonderful contribution to the following problem: can
one extend Proposition (1.4) to other symplectic forms on compact manifolds
(hence a generalisation of the Conley—Zehnder theorem to such symplectic
forms)? He gets a large class of such symplectic forms — including all
volume forms on compact surfaces of positive genus — to which both
Proposition (1.4) and its proof extend naturally.

Remarks. Proposition (1.4) is “locally true” for every symplectic form w
on a compact manifold M: by Weinstein’s symplectic tubular neighbourhood
theorem (W 71) — see also (ChZ 83)), there exists a smooth embedding I of
an open neighbourhood U of O, in T*M into M xM such that 1(0,,)

=AM and I*& = d(pdq). Therefore, by Hofer’s theorem, the Conley—Zehn-
der theorem extends to those hamiltonian isotopies (g,) of w such that the
graph of every g, lies in I(U): this statement in a C°-neighbourhood of the
identity is originally due to Alan Weinstein (W 83).

Even though Proposition (1.4) is not true in general, there is some hope
to deduce the generalised Conley—-Zehnder theorem from Hofer’s theorem via
some weakened form of Proposition (1.4). In the author’s opinion, this
problem in “symplectic topology” is important.
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2. A proof of Viterbo’s theorem

This is a short account of joint work with Biancamaria D’Onofrio (ChDO
87). Viterbo’s theorem is one of the most general known results on periodic
orbits of hamiltonian systems, whereas its original proof was rather simple (V
86), Hofer’s proof (HZ 86), much simpler, and the proof outlined below,
probably even simpler.

-

2.1. Topological prerequisites

LemMA. Let F: E — R be a “quadratic phase function on {0}” (!), and let
(g") denote the flow of its gradient with respect to some euclidean metric on E
(¢' is defined for every t because F is quadratic). For_each non-empty compact
subset K of E, if there exists a number b satisfying

(7) min F(g'(K)) < b  for every non-negative t,
then the closure of | g'(K) contains a critical point of a F with F(a) <b.

t20

Proof. By (7), as K is compact and non-empty, so is Ko < () g"(F -1
t=20

(=0, b]) " K. For each x €Ky, the set {F(g'(x)): t >0} is bounded above
d
by b. Therefore, EF (¢'(x) = |dF (g'(x))l2 tends to 0 when ¢ = + 0. Now,

since F is quadratic, this implies that {g'(x): ¢t > 0} is bounded and that the
compact subset () {g°(x): s >t} is non-empty and consists of critical points

t20
of F. =
We shall use this lemma under the following form:

CoOROLLARY. Given F as in the above lemma, assume that there exist a
topologically embedded sphere S in E and a topological embedding j of some
euclidean ball B into E with the following properties:

(i) The two spheres j(0B) and S are linked in E (hence in particular dim S
+dimB = dimE and S nj(B) # Q).

(i) min F 0j(0B) > max F (S).

Then, ¥ admits a critical point a with F(a) < max F(S).

Proof. Since F is non-decreasing along the flow-lines of its gradient, we
have min F(g'(j(8B))) > max F(S) for every non-negative t. Therefore, the
two spheres S and g'(j(0B)) never intersect for such t's, which proves that
they are linked, hence in particular g*(j(B)) N S # Q, for every non-negative ¢.
Applying the lemma with K = j(B) and b = max F(S), we obtain our corol-
lary. =
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2.2. Statement of the theorem — The Viterbo-Hofer construction

Let M < T*R" be a smooth hypersurface. For each x e M, the kernel
K, of the bilinear from j*d(pdq)(x) is a line. Hypersurface M is of contact
type if there is a primitive a of j*d(pdg) such that a(x)(K,) = 0] has no
solution x e M (such an « is a contact form on M, hence the name given to
these M’s).

ExampLE. If M is an embedded sphere, (strictly) star-like, it is of contact
type.

The characteristics of M are those (smooth) curves C = M such that
T.C = K, for every x eC. They define a smooth foliation, called the charac-
teristic foliation of M. Equivalently, if M = H~!(b) for some regular value b
of a smooth real function H, defined in a neighbourhood of M, then, every
solution of the hamiltonian system

, . oH . OH
(1) q=—a—p(q,p) and p—aq(q,p)

which starts at some point of M remains in M, and the characteristics of M

are precisely the images of such solutions. A characteristic of M is closed if it

is an embedded circle — hence a periodic orbit of such hamiltonian systems.
The following result had been conjectured by Weinstéin (W 79):

THeoRrReM (V 86). If a compact hypersurface M of T* R" is of contact type,
it admits a closed characteristic.

The proof in (2.3) below applies equally well to the more general
theorem proven in (HZ 86), from which we borrow the following key
construction:

LeEmMMA. Denote by v — |v| the standard euclidean norm on T* R", and by
3 _
Q the quadratic form Q(v) = ?nlvlz. Under the hypotheses of the theorem, there

exists a smooth real function H on T* R" with the following properties:

(1) It does not take negative values, and its only critical values are 0 and
c>0.

(ii) M is a level surface of H, it admits H™'((0, ¢)) as a tubular neighbour-
hood and, for each b €(0, c), there exists a diffeomorphism of M onto H™! (b)
sending one characteristic foliation onto the other. :

(iii) H™'(0) is the bounded component of T* R*\H™'((0, c)). Via a trans-
lation of T* R", we may — and SHALL — assume that 0 lies in its interior.")

M Of course, we also assume that M is connected, which is not a restriction either.
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(iv) H™!(c) is the intersection of a (large) closed ball ||v| < R} with the
unbounded component of T* R"\H™'((0, c)).
(v) For |v|> R, H(v) = f(v|?), where f: R.> is a smooth function
3
satisfying f(x) =c for x < R?, f(x) =—2£x for every large enough x > R?
(hence H(v) = Q(v) for every large enough v), and, for each x > R?, f(x)

23?”x and 0<f'(x)<7

Idea of the proof. By our hypothesis on M, there exists a tubular
neighbourhood of M, (trivially) foliated by copies of M such that the
characteristic foliations on any two of them are difftomorphic. From this, the
construction of H is quite easy. m

CoroLLARY. Under the hypotheses of the above lemma,
() if (1) admits a 1-periodic solution contained in H™' (b) for some
be(0, c), then M has a closed characteristic,
(i) If a 1-periodic solution y of (1)) has its image in H™'(b) for some
1

b¢(0, c), then 1(y) = | (y* pdg+H (y(t))dt) is non-negative.

0

Proof. (i) comes from part (ii) of the lemma. Under the hypotheses of (ii),
if b equals 0 or ¢, then y is constant, hence I(y) = b = 0. For b > ¢, we have

d d .
that J(y): = [ (y* pdq) = [( (ﬂ%’)) because 7 is a loop. Therefore, (1)
0
1
yields J(y) = — [dH (y(1))-y(t)dt/2, hence, by part (v) of the lemma,

0

J@) = = (@) ly@)*de
0

1 1 1
Ijﬂ ly@dt = — [ f(y(@©)*)dt = — [H(y(1))dt
0 0 0

hence I(y) = 0

This corollary shows that Viterbo’s theorem would follow from the
existerice of a 1-periodic solution y of (1') with I(y) <O0. This is precisely what
we are going to establish now.

23. An elementary proof of Viterbo’s theorem

For every smooth real function H on T*R", let (g%) denote the flow of
the associated hamiltonian vector field X, defined by X, ld(pdq) = dH (in
other words, its integral curves are precisely the solutions of (1").

IN THE SEQUEL, H AND Q ARE AS IN LEMMA (2.2).
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Since (gp) is a 1-parameter group of linear automorphisms and H—Q
has compact support, the following two properties hold:

(a) (gy) is a one-parameter group of difftomorphisms.

(b) Using the same notation as.in (1.2) — with H(q, p,t):=H(q, p) —
for every large enough positive integer N, each mapping v; = (g%, (v), p;) is
a diffeomorphism.

IN THE SEQUEL, WE CONSIDER ONLY SUCH N’s, AND USE
THE NOTATION OF (1.2) — WITH H(g, p,):= H(q, p) — EXCEPT
THAT WE WRITE F¥ INSTEAD OF F¥.

By our choice of N, the 1-periodic solutions of (1) are those c, such that
v is a critical point of f¥. Applying Corollary (2.1) to F = F®, we shall prove
that, if N is large enough, then f¥ has a critical point v with f¥ (v) < 0; by the
last remark in (2.2), this will imply "Viterbo’s theorem, since f#(v) = I(c,).

LEmMMA A. For every large enough N, the following hold true:

(i) F@ is a non-degenerate quadratic form on W, the index of which is
n(N—2).

(ii) Denoting by y — y* the isomorphism of (R")* onto R" associated to the
standard scalar product, the restriction of F2 to

T=Ax, eEW: x; =y} for j=1)
is positive definite.

Proof. For 0 < s < 3n/2, let Q(s) be the quadratic form v —s[v|?> on
T* R". If we identify T* R" to C" by the isomorphism (g, p) = q+ip*, then,

(8) goi (V) =e**v  for every teR and every veC",
. hence in particular
a8 (0)+i (PP (v)" = € (g; +ip})
where
u(s) = 2s/(N+1).

Therefore, setting r; —Zx,, for 0<j<N, po=yo and p;=y,+y; for

1 <j<N, stralght-forward calculations (see also the proof of Lemma B (ii)
below) yield

N

(9) F29 =F°4+R(s), where R(s)(x, y) = %Z (tanu(S) (i) +Ipi?)

0
2
M (cos u@s) 2)p,- ' )’




M. CHAPERON 155

which makes sense for every s when N is large enough Now, F%(x, y)
= ZIx,I2 on W* and, if N is large enough, every R(s) with s # 0 is positive

deﬁmte hence (ii).

Moreover, by (8), for N > 5, the mappings v; —(q%" (v)), p;) are auto-
morphisms of T* R". Therefore, as in (1.2), the crmcal set of the function F2©
is isomorphic to {veT* R™ gj () =v}. Thus, by (8), the quadratic form
F29 is non degenerate for 0 # s # 7, and its critical set is a 2n-dimensional
vector subspace of W for s =0 and s = n. Now, by (9), the derivative R’(s()
is a positive definite quadratic form for s, = 0 and s, = n. Therefore, writing

s

F2® a5 FO¢0 4 { R'(u)du and restricting it to a maximal subspace on which
sO . . .

F2¢0 s non-negative, (resp. negative), we see that the index of F2® decreases

by 2n after s has crossed the values 0 and 7. Since these are the only values

3
of se[O, Tn] for which the index can change, (i) is proven, for F°(x, y)

=Zijj' ]
1

Lemma B. (i) F¥ is a quadratic phase function on {0). More precisely,
d(F¥—F9) is bounded.

(ii) If N is large enough, then W~ = \(x, y)eW: x; = —yf for j > 0 and
xo = 0! contains a euclidean sphere S centered at 0, satzsfymg max FH (S) <0
and maxF"(S) <inf FE(W™).

PVOOf: Setting .vj = (qja pj) = hH(x’ y) and U;- = (q_lp p}) = hQ(xa y)’ (3)
yields

d(F*~F9)(x, y)

N j N
=Y (P 1(v)—p% 1 ())dY. X+ (g0 —q0)dyo+Y.(a;— g d (Yo +¥));
j=0 0 1

from -this, (i) is clear, since H—Q has compact support.
To prove (ii), notice that

N
(10) Fi(x, )=F°(x, y) = L H(c. (0)dt + § pda),
0 Ij T;
where I; = [—N—]ﬁ, IJVL-i-ll:l and T; is as in Figure 2.
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A valy)
/
Y w;{v;)
Fig. 2

As T; is a loop, we have that

¢ pdg = ¢ pdq—qdp = —% {dH (c,(t))-c,(t)dt

T T2 f
1 1
+ > (P 1 () —pj) g 1 (v)+ 5 pi(a;— 4% 1 (v)).
Therefore, since

q;— ‘151+ 1(v) = j. ‘aa_I: (Cv (t)) dt and P;I+ 1(0)—pj= [ % (Cv (t)) de,

1 1j

we have

1
(H (c,, (t))+ EdH (c,, (t)) . (wj.(vj)— C, (t)))dt,
j
where w;(v) = (qf%,(v), p;)- As H is constant along each ¢li;, this and

{H(c,(t))dt+ $ pdq = |
7 i

I

Taylor’s formula yield

(H @)+ H(w;(v))

1
(11) I_H(cv(t))dtﬂf;pdq =3+

1j

1
—% j'(j'(l—u)DzH(c,,(t)+u(wj(vj)—c,,(t)))du)-(wj(vj)—c,,(t))zdt.
lj 0

Now, since H—Q has compact support, there exists a compact subset K of
T* R" such that, for every positive integer N and every v;e T* R"\ K, all the
values of H and its derivatives involved in (11) coincide with the correspond-
ing values of Q and its derivatives, hence, by (8) and straight-forward
calculations,

(12) {H(c,(t))dt+ $pdg >0 if v; does not lie in K.
T,

I Jj
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Moreover, D? H is bounded, and, by the definition of Co, (N+1)|w;j(v)—c,(0)f
is uniformly bounded with respect to v;eK, N and teI therefore, by (11),
since H is non-negative, there exists a posmve constant C such that we have
[H(c,(t))dt+ ¢ pdg > —C/(N+1)* for every N and every v; €K, hence, by
Ij Tj

(12), for every N and every v; € T* R", hence, by (10), F¥—F° > —C/(N+1)%.
In particular, .

(13) F" is bounded below by —C/(N+1)2 on W*.

Let r >0 be small enough for the ball {jv] <r! to be contained in
H~'(0). Clearly, if no |vj is greater than r, then

fA@®) =f°0) and (W) (v) = (h°) ' (v).
N
Moreover, since F°(x, y) = —) |xj1* on W™, the set
1

S=1(x,y)eW: F°(x, y) = —r?/2N)|

is a euclidean sphere centered at 0 in W~ and, for every (x, y)€S,
v = h%(x, y) satisfies

N
loji? = 1g;1*+pj|* = szk|2+| 2(Z|Xk|) ANY Ix%* =r?
1

for 1 <j < N, hence (x, y) = (g¥)~'(v) and fH¥(v) = f°(v); therefore, we have
proved
(14) FH(S) = {-—rz/2N} .

2

By (13) and (14), 1f N is large enough, we have max Fy(S) = _Zr_N <
C

—(N—+T)_5 <infF

Proof of Viterbo’s theorem. Assume N large enough for the conclusions
of our two lemmas to hold. By Lemma A, there exists a subspace W," of W,
containing W* as a hyperplane, and such that FQ|W+ is positive definite. For

each positive number M, let B,, denote the ball {(x, y)eW;*: F2(x, y) < M},
and let Sy be its boundary in W,*. By Lemma B(i), if M is large enough,
then F HISM is positive. Given such an M, let B denote the intersection of B,
with one of the two closed half-spaces of W;* bounded by W™, and let j: B
— W denote the restriction of the inclusion of W," (!). If M is large enough,
then, the two spheres j(0B) and S are linked in W, and, since 0B consists of
one half of S, (on which F¥ is positive) and a piece of W*, Lemma B (ii)
yields

H(W™), hence our lemma. u

max F#(S) <min F#(j(éB)) and maxFy(S) <O.
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Therefore, by Corollary 2.1, F# admits a negative critical value, hence
Viterbo’s theorem. =

Note. The above proof follows the lines of (HZ 86). What is much
simpler here is the analytical tools we use; moreover, the computation of the
index in Lemma A (i) might be used for further purposes. On the other hand,
the estimates (13)(14) in the proof of Lemma B (ii) demand more work than
the corresponding part of (HZ 86). However, we hope that our approach will
be the ignorant’s delight...
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