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Classical boundary value problems for integrable
temperatures in a C! domain

by ANNA GRIMALDI PirO and FRANCESCO RAGNEDDA (Cagliari)

Abstract, We study a Neumann problem for the heat equation in a cylindrical domain with
C!-base and data in h}, a subspace of L. We derive our results, considering the action of an adjoint
operator on B,MOC, a predual of 4!, and using known propertics of this last space.

Introduction. The classical Neumann and Dirichlet problems for the heat
equation in the cylindrical domain D x (0, T) have been studied by E. Fabes
and N. Riviére ([5]) using the method of layer potentials. They considered
bounded domains of class C' and I’ data on the boundary D % (0, T) for
1 < p<oo. For p=1 the problems are still open. As for the Laplacian we
must introduce a suitable subspace of I! on which the corresponding results
can be proved.

In [3] E. Fabes and C. Kenig studied the Neumann problem for the
Laplacian with data in h*, a subspace of I’ whose dual is BMO. They use the
fact that the solvability of the Neumann problem with boundary data in h' is
closely related to solvability of the Dirichlet problem with boundary data in
BMO.

In order to study the Neumann problem for the heat operator with
suitable h' data, we shall consider the action of an adjoint operator on
a subspace B MOC of caloric-BMO. The definition of BMOC is analogous
to that of B,MOC ([7]).

As usual we must construct k! (caloric-h'), a predual of B,MOC, making
use of an atomic representation.

Applying the results obtained on ByMOC ([7], [8]) we solve the
Neumann problem with data in h;.

We would like to thank Professors E. Fabes and U. Neri for many helpful
conversations.

§ 1. Definitions and preliminaries. A bounded domain D < R" is called a C*
domain if for each point Q € dD there exists a ball B = B(r, Q) with center Q and
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30 A. Grimaldi Piro and F. Ragnedda

radius r and a coordinate system of R" with Q as the origin such that with
respect to these new coordinates

BAD = Bn{x, x): XeR" !, x, > d(x)},
BAID = BA{(x, ®(x)): x R},

where de C§(R"™Y), #(0) = 0 = (8/0x)(0), i=1, ..., n.

We will assume the radius of the ball B can be chosen independently of
QedD, and we call it ry; it is clearly a geometric constant depending only on
the structure of D.

If D is a bounded C' domain we will let N, denote the unit inner normal
to 0D at Q. We write

D, =DxR*,  D,=Dx(0, T),
0D, =dDxR*, 06D, =0Dx(0,T), for 0<T < o0.

X, Y, ... are points in D (or R"), while P, Q, ... are points of dD. The letters
t and s are used for the time variable in R*. We set

I'(X,t) = (nt)""?exp(~—|X|*/4t),
the fundamental solution of the heat equation, and

(X—-0Q, Ny

K(X,t)=(PyI'(X, 1), N> =¢, pEEy exp{—|X —Q|*/4t},

the kernel of the double layer potential.
We recall the definition of the space BMOC(0D ) ([7]): f e BMOC(Dy,) if

(1.1) I, = sgp{ldl“ S1f—141dQds} < 0

where 4 =A,(P,t)={(Q,s)edDy: [P—Q| <r,|s—t| <r?}, fy=|4]""[4f.
With the identification f; ~ f, if f; —f, = constant, BMOC is a complete
normed space with norm (1.1).

We say that fe B,MOC ([7]) if (1.1) is valid and

(1.2) Bo(f)=s;1p||A°|“ [fl<oo
0 A0

where 4° = A°(Py) = {(P, t)edDy: [P—Py| <r,0 <t <r?}. B,MOC is a
complete normed space with norm

(1.3) I Mo.x = Bo(S)+11/1l,-

For our purpose we introduce the space B,MOC, which is analogous to
B,MOC, except that the condition (1.2) at ¢ = 0 is replaced by a condition at
t=T: feB.MOC if (1.1) is valid and

(1.4) Br(f)=supl47|"! | f|<
AT AT
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where 4" = A7 (Po) = {(P, t)edDy: |[P—Py| <1, T-r* <t < T}. B;MOC is
a complete normed space with norm

(1.5) ISz = ILf 1l + Br(f).

As done for B,MOC ([7]), it is possible to show that (1.5) is equivalent to the
norm

(]6) ||f||p.’r.* = Cp.T(f)"'”f”*.p

where
C,r(f) = s;{p{ld"l" ,.I ISIEY 1 Nl = sup {[417* [11—f, 1P} .
T T 4 Y]

We now consider the so-called adjoint of the heat operator, I*¥ = 4, +D,.
Choosing a Banach space E = E(@D;) of functions defined on D, we can
associate to this operator the Dirichlet problem

I*u=0 in Dy,
(1.7) u(X, T)=0,
(X, Dlapr =71,

where f is in E.
If we look for a solution of (1.7) in the form of a double layer potential, we
will write it

X ;

u(X, s) = s)n/2+l exp{—|X —QI’/4(t—5)}9(Q, 1) dQ dt

s aD
where g is an unknown function in E.
The trace on 6DT of u(X, s) gives rise to the operator

<PQ Ng>

(1.8) @(g)(P, 9)—” s exp{—|P—0QI*/4(t—9)}g(Q, 1)dQ dt.

s D
When E = I[?(0D,), ¢ is a singular integral operalor. Using, with the obvious
modifications, the techniques and results of (5] for the operator

5 | <P Q,,',2+1>exp{—lP—Q\2/4(t—S)}y(Q,s)des

(1.9)  J(g)P, 1)
one can show that ¢ is bounded linear operator on If(dD,), 1 <p < .
Moreover, if (a, b) = (0, T) then

(1.10) I‘D(X(u b) N POD % (a,b)) < wlh— a)”f"t.n(nn x (a,b))

where w(6)—0 as 60"

The solvability of (1.7), with the method of the double layer potential, is
related, as [or the analogous problem for the heat operator, to the invertibility
of the operator c,/+® where ¢, >0 and [ is the identity operator.
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This can be obtained directly as in [5] using property (1.10), or simply
observing that @ is the adjoint of J’, where

(1) TP, 0= -] <P—Q—..,z—+.—exp{ —IP—QI/4(t—s5)}9(Q. $)dQ s,
06D
and using the results of {5] for this operator.

So the problem (1.7), for E = I#(0D), | < p < v, has a unique solution if
the convergence of u(X, s) to f is understood in the non-tangential sense. When
E = B,MOC the continuity of @ in E and the invertibility of ¢,/ + @ in E can
be obtained, with only slight modifications, in the same manner as for the
operator J in ByMOC (see [7], [8]).

§2. The space h!*(6D;). We begin by giving the definition of a “caloric”
atom. We say that a function a=a(P,t) is a (I, ¢q) c-atom, 1 < ¢ < o0, il

(i) the support of a is contained in A4 < dD,, with 4 = 4,(P,, t,),
(n) ({ala(P, )1 < 417110,
(i) |faa(P, )] € F(T—ty+rH)?

When g = oo, (ii) becomes (ii") |a(P, t)] < |4 ™!

The definition of c-atom is a generalization of the classical definition of
atom, see ([1]); in fact the condition f,p,.a = 0 is replaced by the more general
condition (iii).

We define h!9, | < g < o0, to be the space of functions admitting an
atomic decomposition

f=13 A,
J=1

where the a; are (1, ¢) c-atoms, ) 7%, |4/] < o and the convergence is in the
sense of L'(0D7). The infimum of the numbers ) j_, |4;] taken over all such
representations will be denoted by ||f{l;,: it turns out to be a norm on
hl4(aD,).

THEOREM 2.1. ByMOC,.(0D,) is the dual space of h!*, with 1/q+1/q’ =
ie. for each 1e B,MOC and for all f =3 #., L,a,eh}, the mapping [ <, j)
= limg. ,, )= ,ljjp,,.r la; is a well defined linear juncuunul on h!. Morcover,
each continuous functional has this form.

Proof. Fix 1eB,MOC and let « be a (I, g) c-atom. Then K/, a)|
=|Jald < |[at1-1, a|+|1 faal =I'+1" By Hélder's incquality we have

I'< (£lal")”"(Ill—ldl"')”"' < (17 = 107)" < W,
4 a4

In the same manner
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IH g

r r
A7 () € ———— AP+ [ g~ 1( (|0 + L)+ 1)
Tt L S Gyt Dl fe 1y e )

(a7 IT PHEPEED < ey 1.
:H

where 7 = (T—t,+r*)"2 and ¢ depends only on the dimension of the space. More

generally, for any f =32, ,a,eh! we have {I,f) --hrn,,_.,oz,.,).,j‘,J
By the previous argument we have |/, a,)| < c|llll, 7, for all j Thcrcfore

IKL < {llrl{.lonl Ay g 7 < €l f g1l

and so B;MOC, g hl4.

To prove the reverse inclusion we first observe that any function f € I4'(4)
such that || f]jze = 1 and supp(f) = 4 can be normalized to be a (1, g') c-atom.
In fact, letting

0 g, = (1Y 4T ) f
we have supp(g,) < 4 and
(Flgul*) < |41 /147] < 142+ 1o
4

In addition

IAI”" |4

ZH)

r
llq < ¢
| l = (T_t0+r2)1/2’

”911 Ilfl

so (iii) holds.

Furthermore, besides the caloric g, we can associate to f another caloric
atom

2.2) g, =(/—/)/Q2\4]'")

baving integral zero on 0D,.

Suppose now L is a linear functional on h!¥(8D,). Given any 4 in 8D,
and any feL§(4), where L§(4) is the class of all felf(4) such that
supp(f) < 4, f belongs to h!'?(4). Assuming, as we may, that || /||y« = 1 and
writing f = g,|47||4|~'/7, since g, is a (1, q') c-atom, it follows that

S e < 14T /111

Therefore, for any fe L§(4)
47|

LN < WLl

WS llzercays

3 — Annnles Polonici Math. 54.1
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ie., L is a bounded linear functional on L§ (4). By the Hahn--Banach theorem
L extends continuously to all feIf (4). Thus, by the Riesz representation
theorem, there exists [eL9(4) such that L(f)={,/! for all fel¥(4). In
particular, for 4 = 0D, it follows that le I9(3D,).

Recall that, given felf(4]) with supp(f) < 47 and norm 1, then g,,
defined by (2.1), is a (1, q) c-atom. Hence

(2.3) IL(g )l = |47 |~ /s Irfll = |L(AT)8f)| < (1L,
A1

Moreover, because g, is defined by (2.2), for all fel¥(A)
[ £O=1) = [ f1= [ 1Ll = S1= [ (A )
4 4 a4 a4 a4 A

= lgfl— gzm = lgl(f—f,,)l-

Hence
A=Y (1 f—f, = 21| f—F4127|4] 7" = 2[L(g,)| < 2|ILI.
4 4
Consequently
(2.4) (147 =119 8 < 2)|L).
a4

Combining (2.3) and (2.4) it follows that [e B, MOC.
The space h!'%dD,) is easily shown (o be compleie, and if
1 <q, <q, < then

1, 1,92 1,
h;'® c h;*%* < h'1,

The spaces h}*? defined above are not a particular case of the spaces H!1
associated to a space of homogeneous type, introduced by R. Coifman and G.
Weiss in [1].

In fact, in our space 0Dy, there is no distance for which the anisotropic
surface disc 4 is a sphere. In [9] we studied the geometric structure of D, in
relation to the surface disc 4, and we established some dilferent results. In
particular, we have the following

THEROREM 22. For any 1 < ¢ < o0, h'"=h"" and the two norms are
equivalent.

This theorem enables us to define the space k! as one of the spaces h'!*,
1 < g < 00, and to use the most convenient one in the proofs of the theorems.
In the following we will use the space h!'? and clearly the same results are valid
for any hl4,

§3. The Neumann problem with data in h!(0D,). Given yeh!(dD,), we
consider the Neumann problem for the heat equation
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Lu(X, t)=4dyu—Du=0 for all (X, t)edD,,

3.1) 'lilg{ uX, =0 uniformly on compact subsets of D,

Oy u(X, t)—=g(P, 2).

The last statement is that dy,u(X, t) approaches g(P, z) in non-tangential
sense, i.e.

lim Veu(X, t = g(P, L.
(Xt)-’(l’z)< xt( )y Np) =g(P,z) ae
(X.ner(P,z)

where
r'P,z) ={(X,t): | X—P|+|t—z|' < (14 p)dist(X, D)} nD,,

B a constant giving the opening of the cone TI.
We look for a solution of (3.1) in the form of a single layer potential

X —QJ*/4(t-
—a § SRR O
0¢éD

where f is an unknown function in h} (0D5).
The first step is to study the behavior on the boundary of

X—
2 exp (~ X = QA -9} (0, 940 s

wX, )= f(Q, s)dQds

LVyu(X,t), Np) = jj

04D

whose trace on 0D, is the singular integral operator

(P Q, Ny

(32) J(f)= lim I J R exp {—|P—Q*/4(t—s)} f(Q, 5)dQ ds

e=0% o ap

= lim j [ K'(P=Q, t—s)f(Q, s)dQds.
e=0" o ap
As already remarked, J' is the adjoint of — ¢ and is continuous from I?(dDy) to
’éD,), 1 < p < oco.
Now we will show that J' is a continuous operator from h!(8D;) Lo
h(éD,). To do this, we need some lemmas.

Lemma 3.1. Ifa = a(P, t) is a (1, 2) c-atom with support in 4 = 4,(Py, t,),
then

(3.3) | § @) < e

————— ¢ independent of a.

Proof. We consider first the case r> < T—t,. Recalling that sup, |J;(a)| € 7
(see [5]), we can write
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f J(@= { lim J(a)= lim { Jia)

DT F)) P aad Y e—0+ DT
= lim (1] [KP=0.i-9a(Q, dQds}dPdr
*oeb 0 oD
= lim I,.
e—0t

Now performing the change of variable z = IP—Q)*/(t—s), we have

—Q, N, |P-Q|%/e
L={a(@s ){I i X2

. z"’z"e"”dz)dP} dQds
i P=0" “ip-giyr-s

IP-Ql2/e
=fa@,9{|...( | ...dz)dP}dQds
4 abD 0
|P—QI2(T —s)
—_fa(Q, {j' ( _[ ...dz)dP}des=I;—I”
8D 0

Using the results in [7], we have

r

t Wl = e el < e Sy

Moreover,
IP=QI2/(T ~5) IP— QAT ~ ta)
I" = [a@Q, s){j { | ..dz— §  ..dz)dP}dQds
4 0 0
|P=QI2/(T ~t0)
+fa@,9{ ... ) ...dz)dP}dQds = I1+15.
a4 aD 0

If s <ty, observing that (T—s)(T—t,)" ! < 2, we have

< f la( {III;“ .(szl(T tl)n./z-l Trzt - Hirm AT dp}dQ %
4 ap - -

,2 1 |P Q) o= HP=QRIT =)
QCT_%{IG(Q,S)I{ Sy ‘j(T iz’ aP (dQds.

Since dim(dD) = n—1, the term { } is uniformly bounded in T= s and P, so
that

r? »

<c :
T—ty  (T—t,+rH)7?2

Iil<c

Reasoning in the same manner, for s > t, we obtain |I{| < cr/(T—1t,+r%)"%
Now we split I; as [ollows:
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|P=Q|2/(T —to)
i=fa@.9{ [ .. [ ..d2)dP}dQds
4 [P—Q|<5r 0
IP=Q)2/(T ~to)
+fa@,9{ | .. ) ...dz)dP}dQds = A+B.
4 |P—Q|>5r 0

We have

|P—Q]
A ~ ’ ~
<c£a(Q S){IP g'ssr(T_to),,,zdP}de C—
< crf(T—ty+r3)t2,

For estimating B, we split it in two parts:

2

r
(T—to)"? £ g

|P - Q2/(T - to) |P=Po2/(T ~to)

B={a@,s{ | ..( [ . .dz— ) ...dz)dP}dQ ds

4 |P—Q|>5r D 0

|P = Po|2/(T - to)
+fa@,9{ [ .. { ...dz)dP}dQds = B, +B,.
4 |IP=Q|>5r 0
We have
P—P,||Q—P,|(|P—QJ2\"~ 272
|Bl|<cf|a(c,s)|{ [ p—gp-rE=Telld °'(' Q')
4 |P—Q|>5r T—t, T—t,

x exp{~|P~ QI’/(T—to)}dP}des Crf(T=t, +79)1,

= (P-0, Np>_<P—P0, Np)\ /P~ FalP/T~to) }
Bz—ga(Q,S){w_éLsr( P—QF P—P,p )( £ ...dz)dP

_ IP=Po]2/(T~1to
4

n ..dzdP}des
T N Ty >yt S )

= B, +Bj.

We can estimate B, and B’ reasoning as before and we find that both are
< crf(T—ty+r3)'2,

If ,z > T—t,, then 2742 < r/(T—t,+r%)*/2, so it is enough to show that
|[apr )| < ¢, where c is a constant independent of a. This can be obtained by
introducing a dyadlc decomposition of dD; as in the following Lemma 3.2,
using the I?-continuity of J' and estimates of K'(P—Q, t—s) (see [7]), and
reasoning as in the last part of case (a) of Lemma 3.3.

LEMMA 3.2. If a=a(P,t) is a (1, 2) c-atom such that [pp,.a =0, then
J'(a)eh!(@D;) and its norm depends only on the dimension of the space.
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Proof. We introduce some notations: if 4 is a surface disc of center
(P, t,) and radius r containing the support of a, we denote by 4, the surface
disc concentric with 4 of radius 2'r, and we set

L1=Xs, and X =xa-4., foriz2.

We distinguish two cases: (a) T—to > r%, (b) T—t, < r%.
For case (a), let p denote the integer such that

(34 4P~ Y T—t,) S r* <477 (T—1y).
We split J’'(a) as follows:
p -
f J’(a))+ ) (x.-J’(a)+L § J (a))
|Al—Al-1|0D1 (

|AllaDr -4y

J'(a@) = (le’(a)+

i=2 =4~ 4di-)
7 Xl ' 4 XI JI
@2 [ r@-Y A — | s
i>p |Allap1-—m i=2|Al_ f“llﬂDT—(dl—dt-l)
P P
= >p =

We will show that, up to a multiplicative constant, 2'M, are (1, 2) c-atoms. We
start with M,: by continuity of J'(a) in I*(8D;) we have
IMll, < W@, +14,072] f J'(@)| < cld|™ V2.
DT -4,
Moreover, using Lemma 3.1,
| | My|=| [ J(@)| < crfT~to+r)'2.
oD aDr
So M,, up to a multiplicative constant, is a (I, 2) c-atom.
For 2 <i < p we have
||!VI£||2 < C{ J. J'(a)2+|A:|_l( j Jl(“))z} = ‘-'{11 +12}-
M= di-1 ODy —(4y—4-)
Recalling that {4a = 0, if we use the mean value theorem and the estimates on
K’ we obtain, following the techniques in ([7], p. 303),
L= [ ([(K(P—Q,t—s)~K'(P=P,, t—ty)a(Q, 5)dQ ds)* dP dt
Ai—di-y 4

< c27H|4,7H,
while, from Lemma 3.1 and Hélder’s inequality,

Iz<C{IA;I_1(N£ J' (@) +4,17( £ J(@)*}
T 4= 4~

r r?
el ———+cfS@P <)) =———+27 ¥
i (T—ty+r?) CI @ < clal” ((T—10+r2)+2 )

< c2 ¥4
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We also have
r . 2
L A— ol P L
(Tt + P72 S 8 Tty + 122
i 2'r
(T—t+ 2077

So 2'M;, up to a multiplicative constant, is a (1, 2) c-atom.
For i > p, we proceed in the same manner in order to show that 2'M
satisfies property (ii). For (iii) we recall that

2r[(T—to+(2r))H2 > 2712,

M= ] ral<c

Lc

So
| § M= [ J)
oDt di—4i-,
<| | (JK(P-Q, t=5)—K'(P=Py, t—t5)a(Q, s)dQ ds)dP di|
di—=4i-y 4
<270,

Next we can write

P [ ’ ,
Rl+i=ZZR,—( [ T+ h _AI_[J a))

|Al | oD — 4,

X2 X
—_— J J ) JI
+(|42‘A1|anj @+ ‘“’)* vy I AT

T~ 42 T—4dp
=T+...+T,.
We show that 2! T,, 1 € i< p, up to a multiplicative constant, is a (1, 2) c-atom,

with support in 4;, 4, excepl for T, whose support is in 4. Clearly, 2' T, satisfies
property (iii). For (ii) we write for 1<i<p,

xz Ki+1 ’
T =-—"— J'(a)+——— | J(a)
YA 4, 1|anrj A | —4 lm'[.

Xi+1
S, L. S Jw=1,+1,-1,.
|A,...1—A,|.mI L

Using Lemma 3.1 and (3.4) we have
[ B<eldi ™ | J(@)? <2720 014, (7!

T4

Ay oDy
] G<eldi, ™ Y | j J(@)? <27 diy 7!
A+ q>i+1 d,—dq-1

The same estimate is valid for [,.
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For case (b): T—t, < r?, since r/(T—ty+r?)*2 > 2712 we write
J(@) =yt @+ Y yJ'@= X M,

22 21

and reasoning as before it is not hard to show that 2'M; is, up to
a multiplicative constant, a (1, 2) c-atom.

Lemma 3.3. Ifa=a(P, t) is a (1, 2) c-atom with support in A = 4,(P, t,),
then J'(a)e h!(0D;) and its norm depends only on n.

Proof. Write
= a——- a.
( i >|A|5

Since the function in brackets is an atom with mean value zero, by the previous
lemma, we are reduced to the case in which the atom has the form

7] L
Al (T—to+r?)H2
As usual, we distinguish two cases: (a) T—ty > r?, (b) T—t, < r?
Case (a). Using the notation of Lemma 3.2, we write

J(a@)=ya+ Y ya=Y M,

iz2 21

If i< p, p the integer of Lemma 3.2, we have

1 r ,
2y : 2y
€2 N m—————o g 27
P Tt S I E
while
[ L [ (JK'(P-Q, t—s)dQds)dPdt
i = -, =S S
di+1 IAIZT—tO-*_rzd”]“Af d
2
< CIAI+1|- W = ('2_ |Af| II-
If i>p, since 2%r’+t,> Tand T >t > s we have
Mz— 1 X ) rn—lzl(ra-l]
4.'[. a WA.HI-A.q (P=Q. t—s)dgdy detg22'(”H)"2("+l)|T_t0|
¢ |T—t, 22|
S ST Dpa-1 22 S '2l(n—1)rn—|221r2
22p-2i .1

e < 2XP|4,, |7
2(7: l)rn 1|T_to| i
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Case (b) is shown by the same reasoning as in the last part of the previous
case.

COROLLARY 3.1. The operator J' is continuous from h!(dD,) to hl(0D).

Moreover, since h(dD;) is the predual of B,MOC, the invertibility of
¢,/ +J' follows from the invertibility of ¢,/+® on B,MOC (see §1).

§ 4. Boundary behavior of single layer potential. In the next theorem we
study the behavior of the single layer potential near the boundary, Consider the
parabolic cone

F(P,1)={(X, 2): |X—P|+|z—t"* < (1+ f)dist(X, D)} "D,
where f} > 0 gives the opening of I' For u caloric in D,
N@w)(P,t)= sup [u(X,s)

(X,s)el'(P.1t)
is the tangential maximal function of « and for an atom a(P, ), u,(X, t) is the
single layer potential of a, i.e.

2,[ i exp{— |X 01%/4(z—s)}

u,(X, 2) — 7 a(Q, 5)dQ ds.

00D

Since, given an atom a = a(P, t) with support in 4 = 4,(P,, t,), we can write

(“‘E ) *al®

the study of u, near the boundary reduces to the study of two cases:

(a) a is an atom with mean value zero,
(b) a is an atom of the form a = c(x,/|A)rT—to+r3)'"?

Then we have the two lemmas.

LemMa 4.1, If a is an atom of the form (b), then N(Vyu,)eL (dD;) and
IN(V yu)li < ¢, where c = ¢, is independent of a (f gives the opening of I').

Proof. As shown in [5], N(P,u,) is in [>(dD,) and
IN(V xu)lc2@pr < cllaliLzepn-
If A, = A,(P,, ty) has the same meaning as in Lemma 3.2 we write
[ Nyu)= [ N(.)+ | N(.)=1,+1,

&Dy d3r Dy —d3r

We have, from the previous observation,
I, | < cr® V2 al| < c.
In order to estimate I, we distinguish two cases:

@ T—te>r% () T—te<r?
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Case (w). If p is the integer introduced in Lemma 3.2, we split I, as follows:

1,=i [ NCO+Y N(...)=iLi+2L,.

1>341-4¢-1 {(>pAi—4i- i>3 i>p

For (P, tye 4,~ 4, consider the cone I'(P, ). If (X, zZ)e'(P, t) and (X, 2} is
such that [X —P[+|z—t|'* < 2'"%r, we have:

[P—Q|=2""'r implies |X—Q|=|X—P+P-Q
= [IP—QI—IX—PIl =271,
|z—s| 2 2¥~2r2 implies [z—s| = |z—t+t—35]
> |lt—s|~z—t]] = 2% 7212,
From this, it follows easily, using estimates in ([7], p. 303), that

1 1 r
Cp E=1)n+1) pn+1 (T— t0+r2)1/2'
On the other hand, for (X, z)e I'(P, t) with | X —P|+|z—t|"/* 2 2!"%r we
have |X —Q| = dist(X, D) 2 c,(|X — P|+|z—1]"*) = ¢,2'" *r and then

1 1 r
Cp 2~ D+ 1) n+1 (T— to+ ,.2)112'

|qua!<

[V yu,| <

So for i £ p, recalling the observations of Lemma 3.2 on p,

IAl’—Al""ll r -1
+12(i—1)(n+1)(T_t0+r2)1/2 < 6”2

|L;| < Cp o

and for i > p (see once again Lemma 3.2)

2(i—l)(n—1)rn—1(T__ tO-)
rn+12(i—1)(n+1)

|L;l < Cp < 01,22(“"’).

Collecting these results we have I, < C,.

LEMMA 4.2. If a is an atom of the form ({) then N(Vyu,)e L'(3D,) and
IN(.. )llLs < ¢ where ¢ = c; is independent of a (f gives the opening of T).

Proof Splitting as in the previous lemma we have
f NPyu)= [ NC.)O+ [ N(.)=1I,+1,.
aDr Ay DT — A,

For the same reason as in Lemma 4.1, |I,| < ¢, while to estimate I,, we use the
fact that a has mean value zero and we write

Vyxtua(X,z)=| j (K(X—-0Q,z—s)—K(X-P,, z—ty)a(Q, s)dQ ds

0dD
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where

X-0
K(X—-Q,z—s) = G:‘WCXP(—IX—QPM(Z—S))-
Recalling the estimates of K (see [7]), introducing once again the decom-
position of Lemma 3.2, and reasoning as in the previous lemma we have
11| < c.

THEOREM 4.1. There exists a constant ¢ > 0, independent of f, such that for
any fehi(0Dy),

IN (quf)"r.'(an-r) <c|f ||hg(ap-,-)-

Moreover, writing u = u,,
Vxu(X, t), Npp—(c,/+J)f(P, 2)

pointwise for almost every (P, z)edDy as (X, 1)~ (P, z), (X, t)eI'(P, z), where
¢, = w,H(0)/2 and J' is the operator defined by (1.11).

Proof. Since ¢, +J’ is invertible on h!(6D;), we only have to show the
non-tangential convergence of Oy,u, to (c,I+J')f, where feh;.

We know ([5]) that this convergence holds when f € I?(8D ) and then also
when fis an atom. Using very simple arguments (see [4], p. 7) one can easily
show that this convergence holds for any feh!(6D).

In order to solve the Neumann problem (3.1) it remains to show the
uniqueness of the solution. To this end, we show

Lemma 4.3. Suppose Lu =0, N(V,u)e ' (0D;) and u(X, t)—0 as t—»0*
uniformly on compact subsets of D. If Oy,u=0 on 8D, then u=0 on D.

Proof. Using techniques similar to those of Lemma 1.6 of [3], one can
show that there exists an integer ¢ > 1 such that N(V,u)eI? and moreover
u = 0 on dD;. Then the fact that u = 0 in D is a consequence of Theorem 2.2
and Theorem 2.3 of [5].
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