ArticleOriginal scientific textClassical boundary value problems for integrable temperatures in a
Title
Classical boundary value problems for integrable temperatures in a domain
Authors 1, 1, 2
Affiliations
- Dipartimento di Matematica, Università di Cagliari, Viale Merello 92, 09100 Cagliari, Italia
- Cagliari
Abstract
Abstract. We study a Neumann problem for the heat equation in a cylindrical domain with -base and data in , a subspace of 1. We derive our results, considering the action of an adjoint operator on , a predual of , and using known properties of this last space.
Bibliography
- R. Coifman and G. Weiss, Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc. 83 (1977), 569-645.
- E. Fabes, M, Jodeit and N. Rivière, Potential techniques for boundary value problems on
-domain, Acta Math. 141 (1978), 165-186. - E. Fabes and C. Kenig, On the space
of a -domain, Ark. Mat. 19 (1981), 1-22. - E. Fabes, C. Kenig and U. Neri, Carleson measures,
duality anti weighted BMO in non-smooth domains, Indiana Univ. Math. J. 30 (1981), 574-581. - E. Fabes and N. Rivière, Dirichlet and Neumann problems for the heat equation on C'-cylinder, in: Proc. Sympos. Pure Math. 35, Part 2, Amer. Math. Soc., 1979, 179-196.
- C. Fefferman and E. Stein,
spaces of several variables, Acta Math. 129 (1972), 137-193. - A. Grimaldi, U. Neri and F. Ragnedda, BMO continuity for some heat potentials, Rend. Sem. Mat. Univ. Padova 72 (1984), 289-305.
- A. Grimaldi, U. Neri and F. Ragnedda, Invertibility of some heat potentials in BMO-norms, ibid. 75 (1986), 77-90.
- A. Grimaldi and F. Ragnedda, Properties and geometrical structure of the boundary of a
-cylindrical domain, Rend. Sem. Mat. Univ. Cagliari, to appear.