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On a conformal-mapping property

by HirosHi Haruki (Waterloo, Canada)

Abstract. This paper states a conformal-mapping property and gives a proof that this
property is equivalent to Ivory’s theorem from the standpoint of conformal mapping. Further-
more, this paper determines, by using the above equivalence, all the entire functions satisfying
the above property.

1. Introduction. Let w =f(z) be a non-constant entire function of a
complex variable z and let D be a non-empty simply connected domain
where w = f(z) is univalent. We denote the set of all domains satisfying the
above conditions by %.

Let A;A,4;A, be an arbitrary rectangle contained entirely in D whose
sides are parallel to the real and imaginary axes on the z-plane. Here the
four vertices A,, A,, A3, A, are listed consecutively. We put A; =f(4,)
(k=1,2,3,4) on the w-plane. We consider the following two conditions:

(C.1) A4} = ALA,.

(C.2) Let EF be an arbitrary line segment contained entirely in D with
midpoint M and let E' =f(E), F' =f(F), M’ = f(M) on the w-plane.

(i) If EF is parallel to the real axis on the z-plane, then the tangent line
to the arc f(EF) at M’ is parallel to the chord E'F’ joining its extremities on
the w-plane.

(i) If EF is parallel to the imaginary axis on the z-plane, then the
tangent line to the arc f(EF) at M’ is parallel to the chord E'F’ joining its
extremities on the w-plane. (See [10], p. 235.)

Ivory’s theorem (see [1], (2], [4]-[10], [12] and [3], p. 32) reads:

For a family of confocal conics, let P,, P,, P, P, be the four vertices of
a curvilinear rectangle formed by any four members of this family arbitrarily
chosen. Then P,P; = P,P, holds, in other words, the lengths of the two
diagonals P, P;, P, P, of the curvilinear rectangle P, P,P;P, are equal. Here
the vertices P,, P,, P4, P, are listed consecutively.
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In many of the above references this was proved by the use of the
mapping functions cosz and z? from the standpoint of conformal mapping
and, moreover, it was proved that this property characterizes the (confocal)
conic sections. In other words, the following theorem was proved:

THEOREM A. If w=f(z) is a non-constant entire function of z, then
condition (C.1) holds in each D belonging to & if and only if

f(z) =asinkz+bcoskz+c,

or
f(z) = az®+bz+c,

where a, b, ¢ are arbitrary complex constants and k is an arbitrary real or
purely imaginary constant with |a|+|b] > 0 and k # 0.

The purpose of the present note is to prove the following theorem:
THEOREM. Let w = f(z) be a non-constant entire function of z. |
(a) Condition (C.1) and condition (C.2) (i) are equivalent.

(b) Condition (C.1) and condition (C.2) (ii) are equivalent.

In Section 3 we shall state a proof of the above theorem. Furthermore,

in Section 4, by this theorem and by Theorem A we shall determine all the
entire functions satisfying condition (C.2) (i) or condition (C.2) (ii).

2. Lemma. To prove the theorem in Section 1 we shall apply the
following lemma (see [11], p. 15):

LEMMA. Suppose that w = f(z) is defined in a closed disk K with centre at
z =z, and is differentiable at z = z,. Suppose further that f’(z,) # 0. If the
point z moves along the ray R: arg(z—z,) = ¢ (= const) emanating from the
point z = z, on the z-plane, then the arc f(R N K) possesses a directed tangent
line at the point w = f(z,) which makes an angle ¢ +arg(f’(zo)) with the real
axis on the w-plane.

3. Proof of the theorem. We shall give a proof of the theorem in Section
1. First, we shall prove that (C.1) and (C.2) (i) are equivalent.

Let the four vertices of the rectangle A, 4,434, (see Section 1) represent
the complex numbers x+y, x—y, x—y, x+, respectively. Then we see that
condition (C.1) is equivalent to the following functional equation:

(1) fx+y)—fx=y =/ (x+P)=f(x-7),

where x, y are complex variables and x+y, x—y, x—y, x+jyeD.
For the proof we introduce the function g = g(z) defined as

(2) 9(2) =f(.

We see that g = g(z) is an entire function since f=f(z) is an entire
function.
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Proof that (C.1) implies (C.2) (i). By squaring both sides of (1) and by the
formula |y|> = ¥y (y complex) we have

B (fx+—Sfx=—MFx+»—f(x—y)
=(f(x+ ) —fx—I (x+7) —f(x—P),

where x, y are complex variables and x+y, x—y, x—y, x+yeD.
By (2), (3) we have

@ (fx+=fx—y)g(E+7)—g(x-7)
= (f(x+7)~f(x=PNg(X+y)—g(x-)).
If we put y=y,+iy, (yy, y; real) in (4), then we have

(5) (fx+y+iy)—f(x—y; —iy))(g(X+y; —iy2)—g(Z—y, +iy)))

= (fOe+yy —iy) —f(x =y, +iy)) (g (X+y1 +iy2) —g(X—y1 —iy3)),
where x is a complex variable and y,, y, are real variables satisfying
X+ +iys, x—y;+iy,, X—y,—iys, X+y,—iy,€D.

By (5) and by the Identity Theorem we have for all complex z,, z,

6) (flx+zy+z)—f(x—z,—2))(g(X+2,—2)—g(X—z, +2,))
=(flx+z;—z))—f(x—2; + 2 )9 (X + 2, +25)—g (X —2, — 23)),

where x is a complex variable belonging to D.

Let E,F,, E,F, be arbitrary line segments which are contained entirely
in D with common midpoint M and are parallel to the real axis on the z-
plane. Furthermore, let the sense from E, to F, and the sense from E, to F,
coincide with the positive sense of the real axis on the z-plane and let
M, E,, F,, E,, F, represent the complex numbers x, x—s, x+s, x—¢, x+¢,
respectively. Here s > 0 and ¢t > 0.

If we put z; = ¥(s+1¢), z; = ¥s—1t) in (6), then we have

() (fx+s)—-f(x—9))g(x+1)—g(X~1)
=(f(x+0)~f(x—1)(g(X+5)—g(X—3)),

where x is a complex variable and s, t are positive real variables with x,
x+s, x—s, x+t, x—teD.

By (2), (7) we have
B (fx+s)—fx=s)(f(x+1)—f(x—1))
=(f(x+0)—=f(x—)f(x+5)—f(x—5)).

By the univalence of w =f(z) in D we have

% Sfx+)—f(x—1#0, fx+1)—f(x—1) #0.
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By (8), (9) we have

f(x+5)—f(x—s) G(xﬂ)—f(x—s))

Fax+0—fx—1) \fx+0)—f(x—1)

Jx+9)—f(x—s)
FG+D—f(x=1
univalence of w = f(z) in D. Furthermore, F(x, s, t) s a continuous function
of two real variables s (>0), ¢t (> 0) with F(x, s, s) =1. Hence, by the
intermediate-value property of continuous functions F(x, s, t) is a positive

function. Hence the two vectors E\F; (E} =f(E,), Fy =f(F,)), E3F; (E}
=f(E,), Fy =f(F,)) on the w-plane are parallel.
In other words, we have

(10) arg(f(x+s)—f(x—s)) = arg(f(x+ ) —f(x—1)).
Observing that

Hence F(x, s, t) = is real-valued and is non-zero by the

lim arg(f(x+t)—f(x—1)) = lim arg(f(X+t)2—tf(x—t)2t)

1—-+0 1—=+0

= lim (arg <f(x *+ ;f(x — r)) +arg (2t))

t=++0
= lim arg (f(x-}-r)z—tf(x—t)) = arg(f’ (x))
—~+0

(f'(x) #0 in D by the univalence of f in D), by (10) we have
(11) arg (f(x+s)—f(x—s)) = arg(f' (x)).

Applying the lemma in Section 2 with ¢ =0, by (11) we see that the
tangent line to the arc f(E,F,) at M’ = f(M) is parallel to the chord E{F}.
Thus condition (C.2) (i) holds.

Proof that (C.2) (i) implies (C.1).

Let E,F,, E,F, be arbitrary line segments which are contained entirely
in D with common midpoint M and are parallel to the real axis on the z-
plane. Furthermore, let M, E,, F,, E,, F, represent the complex numbers
x, x—s, x+s, x—t, x+t, respectively. Here s # 0 and r # 0.

By hypothesis the tangent lines to the arcs f(E,F,), f(E,F,) at M’
= f(M) are parallel to the chords E\F| (E| =f(E,), F} =f(F,)), E5F, (E}
= f(E,), F5 = f(F,)), respectively. Therefore, the two chords E|F}, E,F’ are
parallel. Hence, by taking the univalence of w =f(z) in D into account,
S(x+5)—f(x—5s)
fx+0=f(x—1)

12 fx+9)=f(x=5) _ (;(Hs) —f(x—s)>
fx+0—f(x—1) (x+0—f(x—0) )

is a real number. Hence we have
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By (2), (12) and by the fact that s, t are real we have

(13) (f(x+9)—f(x—9s)(g(x+—g(X—1))
=(f(x+0)—f(x—0)(g(X+35)—g(X—5)),

where x is a complex variable and s, t are real variables with x, x+s, x—s5,
x+t, x—teD.

By (13) and by the Identity Theorem we have for all complex z,, z,

(14) (f(x+z,)—f(x—zl))(g(f+22)—g(f—zz))
= U(x‘*'zz)—f(x—22))(g(f+21)—9(3_‘—21)),

where x is a complex variable belonging to D.

Let the four vertices of the rectangle 4,4,A43A4, (see Section 1) represent
the complex numbers x+y, x—y, x—y, x+J.

If we put z, =y, z; =7 in (14), then we have

(15) (f(x+y)—f(x=y)(g(X+N—g(X—7)
=(f(x+P—S(x=P)(gE+y)—g(x~-),

where x, y are complex variables and x+y, x—y, x—y, x+yeD.
By (2), (15) we have

x+y)=f(x=yI*> =[x+ P —f(x=D)?

or
S(x+y)=f(x=yl =lf(x+7)—f(x=).
Thus condition (C.1) A]A; = A5A, (see Section 1) holds.

The proof of (b) is similar to that given for (a). Thus the proof of the
theorem is now completed.

4. Corollary to the theorem in Section 1. If w = f(z) is a non-constant
entire function of z, then either condition (C.1) (i) or (C.1) (i1) holds in each D
belonging to & if and only if

f(z) = asinkz+bcoskz+c,
or

f(z) = az?+ bz +c,
where a, b, ¢ are arbitrary complex constants and k is an arbitrary real or
purely imaginary constant with |a|+{b] > O and k # O.

Proof. The proof is clear from Theorem A and the theorem in
Section 1.
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