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Introduction. Osgood proved in [20], [21] that if f(2) = f(2yy ..., 2n)
is a function defined in a domain D in the space C™ of n complex variables
2r = @k+iyx (K =1,...,n) and f is locally bounded in D and analytic
in each variable 2 separately when the other variables are given arbitrary
fixed values, then f is analytic in D. According to the famous ‘theorem of
Hartogs [10] the assumption of the local boundedness is superfluous.
A new elegant proof of the Hartogs theorem may be found in [12].

If w(®) = u(®y, .., 2s) 18 a function defined in a domain D in the
space R" of n real variables zx (k =1, ...,7) and % is analytic in each
variable z; separately, then # is not, in general, an analytic function
in D; even if we in addition assume that u ¢ 0(D). A corresponding
example is given by -

wla ) = mgexp|— sl w0,0=0, @@
i i o

It is, however, possible to generalize Hartogs’ theorem for the following
important class of function of n real variables. Let F be a subset of R".
We identify R" with the subset {zeC": yx =0, k=1,...,n} of C".:
Then E may be considered as 4 subset of C". Let D be a domain in R".
Let Ljp denote the class of all the functions f defined in D so that for:
every a?e D there exists a polydisc P(a?,7) = {2z e C*: |ex— | < 7k,
k =1, ..., n) such that for fixed &, where 3 — i < &k < @%+7rx (k =1,...,n),
k < j, the function f(&;, ..., &1y @i, Ejr1y oony &n)y, Ti— 71 < XF< X7 475, i8
continuable to an analytic furiction in the disc |g;—aj| < 75 (j =1,...,%).
Every function feLp is analytic in each variable z; separately.

Theorem 7.1 of this paper gives as ‘a special case the following

(I) If D is a domain in R"; then every function f € Lp is analytic in D.

COROLLARY. If h(x, u) = h(®yy «oey Tpy Uy, ..., ¥ ) tS @ funclion defined
in a domain D C R*™® and harmonic with respect to @ and y separately,
then h 8 harmonic in D.
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Theorem (I) generalizes results concerning separate analyticity of
real functions due to Lelong [19] and Browder [4] (see also {5]), where
the analyticity has been proved for those functions feLp which are
assumed to satisfy some boundedness conditions. The result formulated
in Corollary has been first proved in [19].

The problem of analyticity of the functions belonging to L is a special
case of the following Problem 1. Let D and @ be domains in the space C™
and C", respectively. Let E and F be relatively closed subsets of D and &,
respectively. Put

=(DxF)u(E x@).

We say that a function f(z, w) = f(2,, ..., 2m, W,, ..., w,) defined in X
is separately analytic in X, if

i) f(z, w?) is analytic in D for each fixed w® e F,

(ii) f(=°, w) is analytic in @ for each fixed 2% ¢ E.

PROBLEM 1. Characterize the subsets E of D and F of G for whwh
every function f separately analytic in X = (D xF) v (E x G) may be con-.
tinued to a function J analytic in an open neighborhood of X. '

An answer to this problem gives also an answer to a problem of
Hukuhara [11]. For the statement and solution of the Hukuhara problem
see [24] and [28].

The following problem is a natural complement to Problem 1.

L

PrOBLEM 2. Determine the envelope of holomorphy of X, i.e. the maximal
domain Q2 with the property that X CQ and every function f analytic in
a neighborhood of X admits an analytic continuation mto Q,

A partial solution to these problems is presented in §6 and § 7. To
get our solution we prove at first (a) a generalization (see Theorem 1.2)
of a polynomial lemma due to Leja [14] (see also [7]), (b) a generalization
of the Fundamental Lemma of Hartogs (see § 2), (c) a version of the
Two Constants Theorem for plurisubharmonic functions (see § 3) and (d)
an Approximation Lemma (see § 5). To prove the Approximation Lemma
we interpolate separately analytic functions in nodes which are suitably
chosen extremal points of Fekete-Leja type (see § 4). By the way we
give a contribution to the theory of interpolation and approximation
by rational functions developed in [29], Chapter VIIL.

§ 1. A polynomial condition. Let E be a subset of C", n >1.
We say that F satisfies the polynomial condition (L,) at a point a ¢ C"
if for every family ¥ of polynomials P(z) in » complex variables
2 = (2, ..., 2a) such that

Mog(2) = sup {|P(2)): PeF}< o0, zeE,
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and for every £ > 0 there exist two positive numbers M = M (a, ¢) and
d = d(a, ¢) such that

|P(2)] < Mexp(cdeg P), |z—a|<d, PeF,

where deg P denotes the largest sum of exponents occurring in a mono-
mial term of P. '
~ We say that a set E C O satisfies the polynomial condition (L) at

a point a € C" if for every r > 0 the set E, = {z ¢ E: |z—a]| < r} satisfies
the condition (L,) at a. If E satisfies (L) at each a ¢ E we write E ¢ (L).

By induection with respect to » one may easily prove the following
(compare with [26]) ‘ ?

THEOREM 1.1. If Ei is a subset of the complex zx-plane satisfying (L)
at 2veEr (k=1,..,n), then the set E = E, x... x En satisfies (L) at'
2 = (23, ..., 25).

The following lemma is implicitly contained in [14].

PoLYNOMIAL LEMMA I (Leja, [14)). Let E be a subset of C and let a be
a limit point of E. If there exists a positive number ¢ and a subset S of the
interval (0, o) with the Lebesquwe measure m(S) = o such that for every r « 8
the circle {z: |2—a| = r} intersects E, then E satisfies (L) at a.

This lemma and Theorem 1.1 imply the following

PoLYyNoMIAL LEMMA IL. A sufficient condition that a set EC C"
satisfy (L) at 2*e¢ E 13 that there exist continuum Ex in the zp-plane
(k=1,..,n) such that 22 ¢ E; X ... x E C E. ‘

Let E be a compact set in C with positive transfinite diameter d(E).
Let b(z) be a real boynded function defined on E. Denote by F(E, b)
the family of all the polynomials P in 2z such that

|P(2)] < exp(deg Pb(z)), zeE.
The function & defined by

®(2) = B(z, B, b) = sup {|P(2)""*F: P F(E,b)}, =z¢C,

is called the eztremal function of E with respect to b.
‘If b(z) =0 we write L(z, E) instead of &(z, E, 0). So

L(z, E) = sup{|P(2)|"""*": Pe ¥}, zeC,

where ¥, is the family of all the polynomials P in z such that |P(z)] <1
on E.
It is known that (see [25], [18]):

(1.1) Log @ is harmonic in C— E and continuous at every point a ¢ E
at which F satisfies (L).
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(1.2) If EC{z¢C: |z—a| <1}, acE, E satisfies (L) at a, and b(2)
= |2—a|, then V{(z) = Log®(z, E,b) is harmonic in C—E,
V(z) > 0 for 2 £ a and lim V(z) = 0.

(1.3) LogL(z, E) is the Green’s function of D, with the pole at oo,
where Do, = Dy(FE) denotes the unbounded component of ¢— E.
L(z, E) is continuous at every regular boundary point of Ds.

We shall need the following lemma which is implicitly contained in
Choquet [6] (seec also [3] and [13]).

LemMA 1.1. If E is a compact set in C and if {E,} is an increasing
sequence of compact subsets of K such that E = UE,, then

(1.4) limd(E,) =d(E).

Proof. It is known ([6] and [22]) that given any two compact sets A
and B we have

d(Ad U B)d(A ~ B) < d(4)d(B) .

Hence, using the monotonicity property of the transfinite diameter
and the induction with respect to », we get successively

dX vdouB)dX)<dX v Ad)dX v B)
and

n

(1.5) d(LtJE;)-[[d(c;)gd(qjei)-”d(E;), w=1,2,..,

1

where X, A, B, I/;, e; are arbitrary compact sets and e; C E; (i = 1,...,%).
To prove (1.4) it is enough to show that lim d(F,) > d(E). If d(E) = 0,
then (1.4) is obvious. 1f d(¥) > 0, then there exists &k such that d(E,) > 0
for n > k (see [13]). Therefore without loss of generality we may assume
that d(E,) > 0 for n =1, 2j5...
Given £ > 0 there is an open set @; such that ¥;C @; and

d(Gy) < d(E)exp(ef2hy, i=1,2,..

0 . k
Since EC | )Gy, there is k such that ECQ = | JG;. Therefore
1 1
by (1.5)

k k
a@)-[[ aEy <amo-[]a@y,
1 1
whence

k -
d(E) < d(D) < d(Ex) ]] g((% < d(Ey)e .
1
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So d(E) < d(E,)et, n > k. Hence limd(E,) > d(E). The proof is
concluded.

By the way we want to remark that the proof of Lemma 2.10 in [13]
is faulty. The reason of the faultiness lies in the simple fact that the func-
tion exp(—1/t) is convex and not concave in the interval 0 < ¢ < 1/2.
In particular, inequality 2.2.12 in [13] does not hold for the transfinite
diameter.

THEOREM 1.2. A compact set E C C satisfies condition (L) at a € E
if and only if each component of C— E conlaining a on its boundary is regular
at a with respect to the Dirichlel problem.

Proof. Necessity. Let E satisfy (L) at a. Then by (1.2) there exists
a function V(2) which is harmonic in C—E, V(z) > 0 for z #a and
lim V(2) =0. So V(z) is a barier for every component » of C— FE such

that a € éo. Therefore ([3], [13]) every such component is regular at a.

Sufficiency. We have to consider two cases.

Case 1. There is no component w of C—E containing a in its
boundary. In this case for every ¢ > 0 the set C— Dy(E,) contains a com-
ponent G such that @ e G. The component @ is a simple connected domain
with boundary ¢G C E,. Let ¥ be a family of polynomials with Mg(z) < oo
in E,. By the Polynomial Lemma II and by the Borel-Lebesgue covering
theorem for every &> 0 there are 6 > 0 and M > 0 such that

|[P(z)] < Mexp(edegP), PeF, dist(z,0G)<5é.

By the maximum principle we have |P(2)] < M exp (¢ deg P), P e T,
2z € G. So E satisfies (L) at a.

Case 2. Let o be a component of C— FE and let the point a be a re-
gular boundary point of w. Take > 0 so small that the circle [z—a| =r
intersects . Then a belongs to the boundary of the unbounded com-
ponent Dy, of C— E,. Since the regularity is a local property, the domain D
is regular at a. In particular, the function L(z, E,) is continuous at a and
lim L(z, B,) = 1.

Let & be an arbitrary family of polynomials such that Mgx(z) < oo
in E,. Put

Kp=1{2el;: Mg(z)<n}, n=1,2,..

Sinee Mg is lower-semicontinuous and Mg(2) < oo in E,, the set K,
is closed and KnC Knyy, Er — | ) Ky. So by Lemma 1.1 d(K,) /d(E,).
1

By the definition of L(z, E) we have L(z, E,) < L(z, K;). The function
U,(z) = Log [L(z, E,)/L(z, K,)] is harmonic in Dy and Ux(co) = Log[d(Kn)/
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/d(E,)]. So by the Harnack’s principle L(z, Kn)\ L(z, E,) for 2 e Dy.
Accordingly, given ¢ > 0 and 2 € Dy one can find n, = ny(2, €)- such that

L(z,Kn,) < L(z,E,)e¢, n=mn,.

3

Smee L(z, E,) is continuous at a, there is ¢ > 0 such that
L(z,B,)<e, zeH, H={2eDy |2—a|<p}
By the definition of L(z, K,) and of K, we have
|P(2)] <nL“°‘P(z,K”S, 2¢eC,PeF,n=1,2,..
Consequently,
|P(2)| < ny exp (2¢ deg P) , zeH, Pe¥.

Applying now the Polynomial Lemma I to the family of all the
polynomials Q(z) = P(z) exp (—2¢ deg P), where Pe¢F, we can find
constants 6 > 0 and M > 0 such that

IP(2)] < Mexp (3edeg P), |¢—al<é, PeF.

By the arbitrariness of ¥, r> 0 and ¢> 0 we conclude- that E
satisfies (L) at a.

From the proof we derive easily the following sufficient condition:

If a € E and there i3 a component w of C— E such that a € ow and o is
reqular at a, then E satisfies (L) al a.

Theorem 1.2 generalizes the Polynomial Lemma II as well as another
result also due to Leja [17].

Using the notion of the thin set (see [3]) Theorem 1.2 may be refor-
mulated in an equivalent way as follows.

THEOREM 1.2.a. A compact set E C C satisfies (L) at a € E if and only
if E 18 not thin at a.

We shall further need two following remarks.

Remark 1.1. Let E be a subset of C" satisfying (L) at 2° ¢ E. Let f
be an analytic function in a ball ||z—2°| < R such that f(z) = 0 for z ¢ E.
Then f(z) = 0.

Proof. Without loss of generality we may put 2° =0. Let 0 <r
< min (1/2, R). Then |f(z2)| < K = const in ||| <r. Expand f into the
series

(1.8) &) =20, <R,
0
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of homogeneous polynomials @, of respective degrees s. By homogeneity
of @, and by the Cauchy inequalities we have
|Qa(a)~|<K"_.°; $8=0,1,.., aeC", llell =1,
whence
(1.9) Qs(2) < K27°, [kl < 72, s=1,2,
i
Pj(2) = Y Q4(2) is a polynomial in #» complex variables of degree at
o -
most j. By (1.8) and (1.9)
IPi(2)l < If(2)|+E27, Jel<7/2,j=0,1,..,
whence
!Pi(z)l<K2—71 el <72, 2¢ B, j=0,1,..

Since FE satisfies (L) at 2* = 0, so for every & > 0 there exist positive
numbers 6 and M such that

|Pi(2)] < ME277¢, |ell<é,j=0,1,..

If 0<e< }Log2, then |Pi(z)| < ME2 "% whence f(z) = 11m P;(2)
=0 as |jz]] < é. Hence f= 0.

Remark 1.2. Let E = E, X ... X E,, where E; (j =1, ..., n) is a com-
pact infinite set in the 2;-plane. Let f be a function analytic in a domain
DC C" such that ECD. If f=0 on E, then f =0 in D. (Proof by in-
duction with respect to =.)

§ 2. A generalization of the Fundamental Lemma of
Hartogs. The following theorem will play a basic role in our further
study.

THEOREM 2.1. Assume that: (a).G is an open set in C"; (b) E 18 a compact
subset of @, E € (L); (c) {A,} is a sequence of positive real numbers; (d) T is
an arbitrary mon-emply set of arbitrary elements; and (d) for every teT
{f(z, 1)} is a sequence of amalylic functions in G such that

(i) fu})%Log [f(2,t)] < K =const, ze@, »>1,
(if) lim sup sup%Log |fo(2,t)] < A = const, z € E.
>0 teT Ay .

Then for every ¢ > 0 there exisis a positive number M = M () and an
open subset U = Ul(e) of G such that EC U and
(ili) |fy(z,t)| < Mexp[(A+e€)4,], 2e U, teT, v>

This theorem follows immediately from the followmg
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LemmA 2.1, If the set E satisfies (L) at a fized point 2* ¢ E and (i)

and (i) are satisfied, then for every &> 0 there exist positive numbers
M = M2, &) and 6 = 6(2°, ¢) such that

(iv) 1f(z,8)| < M exp [(A+e)4,], |e—2*| <4, teT, »>1.

Proof. Without loss of generality we may assume that 2° = 0. Let
0 < r < dist (F, 9G) and let for every te T

(2.1) Sz, e = 3 @iz, 1), el <r

8=0

be the expansion of f; exp (—A4;) into the series of homogeneous polyno-
mials of respective degrees s. By (i)

Ifje_‘“’[ < elK—4)y for |2|l<r, teT, ] =1

Hence by the Cauchy inequalities

1Qis(a, ) <7 ¢, aeC", |all=1,8>0,j=1,1eT,

and consequently

hnd yl+1
) ]

@2) ) gl < em-an @

1_ Q/'r’ ll<e<r,telT,
s=[4]+1

where [1;] denotes the integer such that A;—1 < [4;]1 <
By (ii) and (i) for ¢ > 0 and z ¢ E there exists a posmve number
H = H(z, ) such that for teT and j >1

(2.3) |fi(2, )| e~4% < He .

)
For every fixed t e T, Py(2,1) = g‘ Qis(z, t) is a polynomial in z;,...,24
8=0
of degree at most [4;]. By (2.1), (2.2) and (2.3)

til+1
|Pi(z, t)] < H(z, £)e+ g(K—A)).,(Q/T—) o
for ze B, [fl<o<r teT, j>1, whence
P, 00 < HGey )+ g

Therefore

|Pi(z, )e~H| < H(2,6)+2 < oo, zekH, [dl<er,tel,j>
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where 0 < g, < min (r/2, re4—K), Since E satisfies (L) at 2®* = 0, so there
are positive numbers M, and 4, such that

|Pj(z, t)] < Mye®+lde < Mye*, 2l <y, teTl, j>1.

Hence in virtue of (2.1) and (2.2)

fie 49 < My + (65 gy < (M, +2)e,

r—0
for |2l < 6 = min(p,, é;), te T, j > 1. By the arbitrariness of ¢ > 0 the
proof is concluded.

CororLLARY 2.1 (Hartogs Fundamental Lemma, [2]). Let g,(2)
= Gupotim (P1y ooy 2n) (B1y ey pm = 0,1, ...) be an m-fold sequence of analytic
Sfunctions uniformly bounded on every compact subset of an open set G C C".
Let

lim sup I'ull/lg,,(z)IR" <1, =ze@,
|u|—>o0
where |u| =+ ...+ pim, R* =R{*...Ry, Rr=const>0 (k=1,..,m).
Then for every compact subset Q of G and for every e > 0 there exists
a positive number M = M (Q, ) such thal

9. B < Me**,  zeQ, |u=0.

An extension of the Hartogs lemma (for » = 1) of the type given
by Theorem 2.1 was first offered (using a little bit different language)
by Leja ([15] and [16]). The reasoning used by us to prove Theorem 2.1
is a modification of the reasoning used by Leja in [15] or in [16].

Let us also remark that Theorem 2.1 is very akin to Theorem 10
in Lelong’s paper [19].

Proof of Corollary 2.1. Every point of @ belongs to a compact
polycilinder contained in G. Then by Polynomial Lemma II we may
assume that @ € (L). We can also assume that {g, R"} is uniformly bounded
in G. Arrange all the m-tuples u = (g, ..., un) into a sequence pu? = (uyj,...
ey imj) (J =1,2,...) without repetitions. The direct application of
Theorem 2.1 to the sequence

[i®) = @R, j=1,2,..
with 4; = |@/|, A =0 and K = sup (sup |g,(2) R*|) and with E replaced
ze@
by @ gives the corollary. g

§ 3. A version of the Two Constants Theorem for pluri-
subharmonic functions. Let G be a domain in the space C" and let F

Annales Polonici Mathematici XXII ’ 11
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be a compact subset of G. Denote by M = M(G, F) the family of all
the functions U(w) plurisubharmonie (= plsh.) in G such that

(3.1) Uw)<O0onF  and U(w)<1lon G.
Put

(3.2) h{w) = hg(w, F) =1i13/1 supsup {U(w’): UeM}, we@Q.

The function % is plsh. in ¢ as an upper envelope of a uniformly
bounded family of plsh. functions (see [8]). Moreover, if V is an arbitrary
plsh. function in G such that V<m on F and V< M on @, then

(3.3) V(w) < m+(M—mh(w), we@.

Indeed, if m > M, then m-+(M—m)h(w) =m(1—h(w))+M > M
and (3.3) is obvious. If m < M, then (M—m) '(V(w)—m) is a member
of M, whence (3.3) again follows.

We may treat (3.3) as a version of the Two Constants Theorem for
plsh. functions. ‘

ExamMpLE 3.1. Let @ be a domain in the complex z-plane and let F
be a compact subset of @. Denote by F' = Fg the union of F' and of all
the components of G— F which are relatively compact in G. Then hg(z, F)
is harmonic in G—oF, and in every component of G—2F the function hg
is identical with the solution of the Dirichlet problem with boundary
values equal to 0 on oF and to 1 on 8G.

ExAMPLE 3.2. Let Gy be a domain in the complex wg-plane regular

with respect to' the Dirichlet problem. Let Fx be a compact subset of G
such that 0Fye(L) (K =1, ..., n). Put

(34) Q={wel x..xGu: h(w) <1}, h(w) = he(Wew, Fy)+...+

+ h’Gﬂ(wﬂ’ Fﬂ) .
Then h(w) = ho(w, F), where F = F, X ... X Fy.
Indeed, the function A is plsh. in the domain 2, continuous in its
closure and k(w) =0 on F, h(w) =1 on 22. It is enough to show that

given a plsh. function U in 2 such that U(w) <0 on F and U(w) <1
in 2 we have '

(3.5) U(w) < h(w) in Q.

If » =1 inequality (3.5) is obvious. Assume that (3.5) holds in the
case of n—1 variables and observe that the set

E = Lnj{weQ: wg € Fr}
1

is closed:in £ Moreowver, the function & is harmonic in Q— E. It is obvious
that (3.5) holds on 9. Therefore, by the maximum -principle for sub-
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harmonic functions, it is sufficient to prove that (3.5) holds on E.
Let w® be a fixed point of E. Then there exists j (1 <j < =) such that
w} ¢ F;. We may assume that j = 1. The function U, = U(u?, w,, ..., wn)
is plsh. in

Q, = {(wyy «o.y Wn) € Gy X oo X Qi hy(w,) + ... + ha(wy) < 1}
and U, <0 on F,x..xF,, U;<1in 2,. Bjr the induction assumption
U, < hy(w,) + ... + hn(wy) in £ .

In particular, U(»°) < hy(w3) + ... + hn(wh) = h(w°), because hy(wy) = 0.
The proof is concluded.

Observe that the domain 2 given by (3.4) is a union of all the poly-
domains

{fweG X... xGp: hg(we, Fr) < O, k=1, ..,n},

where 0y > 0, 0,+...+ 6, = 1.

Condition (4,). Let G be a domain in C" and let F be a compact
subset of @. We say that the pair (@, F) satisfies the condition (4,), and
write (G, F) € (4,), if for every o (0 < 0 < 1) the set

G, = {we@: hglw, F) < d}

is a relatively compact subset of G and F C G,.

Condition (4). We say that the pair (G, F) satisfies condi-
tion (A) if there is a sequence of domains G4, s =1, 2,... such that
G, € G (i.e. G4 is relatively compact in @), FC G4 C Gy1q, (G, F) € (4,)
and G = |J G,. For (G, F) satisfying (A) we put

(3.6) Hg(w, F) = lim hg(w, F), weG.

8—00

The function Hg is plsh. in G as a limit of decreasing sequence of
plsh. funetions.

Remark 3.1. If (G, F) satisfies (4), then G is a domain of holo-
morphy. In particular, 2 given by (3.4) is a domain of holomorphy.

Indeed, G = {w e Gs: hg(w,F)< o} (0<o<1) is a domaia of
holomorphy by Theorem 13.6 in [8], whence by Behnke-Stein theorem
(see [8], p. 122) also @, is a domain of holomorphy and finally, again by
the Behnke-Stein theorem, G is a domain of holomorphy.

Remark 3.2. If & is a plane domain and ¥ is a compact subset
of G, then 1° (G, F) ¢ (4,) if and only if (2F U oG) e (L), 2° (G, F) e (A)
if and only if 8F ¢ (L). Here Hg(z, F) = hglz, F).

11*



156 J. Siciak

§ 4. Extremal points and extremal functions. Let E be
a compact subset of ¢ with the positive transfinite diameter d(E). Let
b(2) be a real bounded lower-semicontinuous function defined on E.

Given any system 2™ = {z,,...,2,} of n+1 distinct points of E
we put

(4.1) vem) = [ je—zl,

ossf<k<sn

L ()
G (n ] z2—2 G ( G b
(4.2) L’)(zyz )) = 1[z-—zk’ ¢7)(z7zn)’ b) =L”(z,z(”’)e 21)7
7
k=0
(k#7)

1=0,..,n.
Every system

1™ = {Nnoy M1y ooy Mua}, " =1,2,..,
of n+1 points of E such that

(43) V(@) exp[—n X (z0)] <V (™) exp[—n Y b(nus)]
c=0 k=0
for zmCE,

is called an n-th system of extremal points of E with respect to b.
It is easy to check that (4.3) implies

(4.4) 169z, 1™, b)| <exp(nb(2)), 2¢E,j=0,..,n.

We shall denote by E* the set of all the limit points of a fixed trian-
gular sequence {n.;} (j =0,...,n; n =1,2,..) of extremal points of
with respect to b.

The extremal function @ defined in § 1 satisfies the following pro-
perties (see [18], [25]):

(4.5) & (z, E, b) = lim [max |8z, ™, b)['™), 2¢C,
n—>00 0<ji<n
the convergence being uniform on every compact subset of C —E*. If @

is continuous in €, the convergence is uniform on every compact subset
of C;

(4.6) Dz, E,b) <exp (b(2)), zekE;
(4.7) Dz, B,b) =exp (b(2)), 2zeE*
(4.8) b2, E,b+c)=¢D(z,E,b) in C, if ¢ = const;

(4.9) Dz, E,b)<DP(2,E,b,) in C, if b(2) < by(z) on E;
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(4.10) Log @ is harmonic in C— E* and lim (®(2)/|2|) exists;
z—>00

(4.11) @ is continuous at every point a ¢ £ at which E satisfies (L);

(4.12) If p(2) is an arbitrary polynomial of degree <<n and |p(?)}
< M exp (nb(2)) on E, then |p(2)| < M®"(z, E,d) in C.

LeMMA 4.1 ([9]). Let E be a compact set with d(E) > 0. Let a,, ..., ax_
be finite points in C— E. Let b(z) = (1/k) Log |p(z)], where p(z) = (2— @,)...
v (2—ag_1) (we put p(2) =1, if k =1). Then

(4.13) ®(z,B,b) = p(2)|"*, zeE.

Proof. Observe that |p(2)|" = exp (knb(2)). So p™z) e F(E,b) and
deg p» = kn. Hence [p(2)]'* < @(2, B, b). This inequality along with (4.6)
gives (4.13).

Condition (r,). We say that a bounded plane domain D satisfies
condition (r,) (and write D e(r,)) if (1) D consists of a finite number
of disjoined Jordan curves [, ..., I'x—1, the interior of Iy containing all
the other curves, (2) there exists a positive number r, such that for every
point 2° € 0D there exists an open dise 4 = A(a,r) with center a and
radius 7 > 7, such that ACC—D and 4 ~ D = {2°}.

LEMMA 4.2. Let D be a bounded domain satisfying condition (r,).
Let E be a compact subset of D. Let a; be a fized point in the interior of I';
(j=1,..,k—=1). Put

bi(z) = (1/k) Log |p(2)i + 4b(2) ,
where p(2) = (2— ay)...(2—ax—,) and b(z) =0 on E, b(2z) =1 on oD,
Then

(i) there exists a positive number A, such that @(z, E w oD, b;) = expb;(z),
for ze EwoD, 0 < A< A,

(ii) hp(z, B) = (1/(k)) log [@*/|p(2)]] in D—oH, 0< i< iy, where
hp(z, E) is the subharmonic function in D defined by (3.2).

Proof. Ad (i). Assume at first that F e (L). Put F = F v éD. By

Polynomial Lemma II also F ¢ (L). So &(z, F, b) is continuous in C. By
Lemma 4.1

D(z, F,b) = |p@)* inF.

k k—
By (4.9) and (4.6) &(z, F, b)/VIp()| < &(z, F, b2)|V|p(2)]
=®(z2, E, b)e®? <1 in E. Therefore

B(z,F,b;) exp (—by2)) =1 in E.
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Put 47 =min {r,, dist (£, D), min dist (a;, [;)} and

1<i<k-1
8 ={zeC: dist (2,0D) =7r, ze C— D}.

Then for every a ¢S the disc A(a,r) is contained in C—D and
A(a,r) ~n D = {2%}, where 2* depends on a. Since dist (E, 8)> r, there
is an integer m > 0 such that

e(rflz—a))" <1 for z¢E and aeS.
Put
p = inf Log [B(z, F, by)/lp(2)[""], 8 =] A(a,r2).

z€Sr a€esS
We claim that x > 0. Indeed, by(z) = (1/k) Log |p(2)|. So by Lemma 4.1
U(z) = Log [B(z, F, by)/|p(2)["*] =0 in F.

Moreover, the function U is harmonic in C—F and lim U(z) = oo
as 2 tends to oo or to a; (j =1,..., k—1). Thercfore, by the maximum
principle, U(z) > 0 in C — D. The set 8, is 2 compact subset of ('—
—[D u {ay, .., Qr—1, o}]. S0 u> 0. ‘

Let 2° be a fixed point of 2D and let a be a point of § such that
[#*—a| = r. Put By(z) = (1/k) Log |p(2)| + A Log [e(r/|z— a|)™]. Then B;(2?)
= by(#), exp By(2) = |p ()" [e(r/lz— al)"T" and |p(2)"e(r/R)") < exp Bi(2)
<expbiyz), 2¢F, R=max {|z—al|: 2z¢F, a ¢ 8}, Therefore by (4.8)
and (4.9)

(4.14) &(z2,F,b)[e(r/[R)"} < ®(2,F,B) <P(z,F,b), zeC.

Since F € (L), the function H;(z) = Log &(z, F, B;) — B;(z) is harmonic
in @ =C—[F*v {a,...,ax_,, oo} v A(a,7/2)] and continuous every-
where except the points a,, ..., ax_1, 0o, a. By (4.7) we have Hyz) =0
in F'*. Further, lim H;(z) = 4+ oo as 2 tends to coor to a; (j =1, ..., k—1).
Let z belong to the boundary of A(a, r/2). Then by (4.14)

Hy(z) > Log [B(z, F', by)/Ip(2)["*1+ A Log [e(r/R)™]— A Log [e(r/lz— a)"]
> u+ A Log [e(r/R)™]— 4 Log (2™e) = u+mi Log (7/2R) .

So H,(2) > 0 on 94(a, r/2) if
(4.15) 0 < A< py/lmLog (2R[r)] = 4.

Therefore, by the maximum principle, H;(z) > 0 in G for every 1
satisfying (4.15). But (F—F*)C @, so Hy(2) > 0 on F. By (4.6) H;(2) < 0
on F. This implies that H;2°) =0, i.e. D(*, F, B;) = exp By(??)
= exp by(2?). By the second inequality in (4.14) and in view of (4.6) we

have @(2°, F, b;) = exp by(°). By the arbitrariness of 2 e¢D we have
proved (i) under the additional assumption that E e (L).
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Suppose now FE is an arbitrary .compact subset of D. Take 4 > 0
so small that E, = | J {#: |[¢—a| < é} is contained in D.< Then -E, € (L).
a¢E

So &(z, E, v 0D, b;) = exp by(z), z € E; v éD, for every sufficiently small
positive 4. Hence by (4.6)

exp by(z) = D(z, By u oD, b)) < DP(z, ELoD, b)) <expbyz) on EuéD,

whence the result follows.
Ad (ii). It follows from the maximum principle that @(z, E v 6D, b;)
= @ (2,2 waD,b;). By (4.10), (4.11) and by (i) the function U(z)
1
~ 2
equal to 1 on éD and to 0 on E. By (4.11) the function U is continuous
at every point z € 2E at which ¢E satisfies (L). Since the set

Log [®*(z, E w @D, b;)/|p(2)]] is continuous in D, harmonic in D —éE,

{z ¢ 0E: 0E does not satisfy (L) at z}
is polar (see Theorem 1.2.a and [3], chapters III and VII), so
U*z) =limsup U(a) =hp(z, E), =zeD.

a—z

The proof of (ii) is concluded.

Put
(4.16) E,={zeD: hp(z, E) = o},
(4.17) D, ={zeD: hp(z, E) < o} .

If oF (L), then for every o (0 < o < 1) the set E, is a union of fini-
tely many Jordan curves and E, is a boundary of D,.

If E is of positive transfinite diameter, not necessarily satisfying (L),
then there exists o, (0 < o, < 1) such that E, is a union of finitely many
piecewise analytic Jordan curves bounding D, for every o € (g, 1).

The last two lemmas and property (4.5) of the extremal function @
imply

THEOREM 4.1. Assume that: (1) D is a plane domain satisfying con-
dition (r,), (2) E is a compact subset of D, (3) biz) = (1/k) Log |p(2)| +
+ Ab(z), where 1> 0, b(z) =0 on E, b(z) =1 on 8D and p(2) = (z —a,)...
w(@—ag_y) (we put p(2) =1 if k=1), a5 (j =1, ..., k—1) being a fixed
point in the interior of I'y, (4) n*" = {54, ..., Nx,} 18 a (kv)-the extremal points
system of E v oD with respect to b;.

Then there exists A > 0 such thal
(4.18) lim Log[ max 18Dz, %7, b))|""/|p (2)|1 = kAhp(z, B), zeD—oH,

r—00 o<j<<kr
the convergence being uniform on every compact subset of D — 2E. If, moreover,
OF € (L), then (4.18) holds wuniformly in D.
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§ 5. Interpolation of separately analytic functions in
extremal points. The main result of this section is given by the fol-
lowing

APPROXIMATION LEMMA. Let D be a k- connected domain in the complex
z-plane satisfying (r,). Let E be a compact subset of D with d(E) > 0. Let U
be an open set in C" and let F be a compact subset of U. Suppose f(z, w)
= f(2, Wyy ..., W) 8 a function defined and separately analytic in X =
= (D xF) v (E xU).

Then there exists a positive number A (depending only on D and E)
and a sequence {Q,(z,w)} of analytic functions in D x U such that:

(a) The series D Q, converges to f in D X F;

(b) For every subdomain G of U such that F C G and |f| < M = const
in (B X @) v (D xF) the following inequalities are satisfied

1Q,] < 2(kv+1)Mc exp (— kiv[o — e — 7 — (6 — &) ho(w, F)]} ,

zeD,, weG, v = vy = e, 0),

where 1° ¢ = ¢(o, ) depends on o and v but not on » nor on (2, w), 2° ¢, o, v
are arbitrary real numbers satisfying the conditions e > 0,0 < gy <t< 0 < 1,
3° g, ts the smallest number with the property that 0 < o, < 1 and for every o
(dp< o <1) the set E, = {zeD: hp(z, E) =0} is a compact subset of
D—E;

(e) If F e (L) and f is bounded in E X U, then there is an open neigh-
borkood V of D xF such that the series ) Q, is uniformly convergent on every
compact subset of V.

Observe that (a) and (¢) give an analytical continuation of f into V.

Proof. Let I'; (j =1, ..., k—1) be the components of oD. Let p(z)
= (2—@y)...(2— Gx-1), bx(2) and ¥ = {9y, ..., Y} (» =1,2,...) have the
same meaning as in Theorem 4.1. Let 4> 0 be so small that (4.18) is
satisfied.

Enumerate the points of #%*” in such a way that %y, ..., 71, € E and
the remaining points of 7*» lie in 2D. Put

1y
(1) filz, w) = D flni, w) I, 1) ()0 ()1,
j=0
zeD,weU,r»>1.

We shall prove that the sequence {@,} defined by
(5.2) =5, Q=f—Ffa, r=2,3,.

satisfies all the required properties.
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Put
7’,(2) = (z_ 770) "'(z_ ﬂkv)[?(z)]—' ) Y = 1’ 2’ oo
and let o, be the smallest number such that for every ¢ (o, < 0 < 1) the
set D, given by (4.17) contains E in its interior. Let us orientate E,

(0g < 0 < 1), defined by (4.16), positively with respect to the interior
of D,. Then by the residue theorem (comp. with [29], p. 186)

1 (0= re) (¢, )
omi) T o) L—r

(5.3)  flz,w) =

and

(5.4)  flz, w)—fz, w) =
Observe that

Ir(2) _ 199@)] le—msl lp Q)
Ol 1) 1E— ] 1p(R)]"]

where &7(2) = @7(z, s*", b,) is defined in accordance with (4.2).
By (4.4), (4.12) and by Theorem 4.1 we have

zeD,, wePF,

1 [(ra) [0,
21% ";(C) C_z,dC, zeD,, weF.

1=0,1,..,k,

Ip(2)"|8(2)| < exp (kivhp(z, B)), 2eD,j=0,..,kv,»>1.
Again by Theorem 4.1, given ¢ > 0 and ¢ (¢, < 6 < 1), we have

JDax DO PO =M, By, v= v, =we, 0).
<ji<

Therefore for ze D, (oo, <t<0<1), weF and » > v, = %(¢, 0) we
have

(5.5)  |f—f.l < Mo(w)|D|A(B,)e(E, Bo)o(Dy, Bs) exp (v[kir— (kAs—ze)]) ,
where M (w) = sup {|f({, w)|: { € B}, |D| =sup {la—bl: a,beD}, A(E,)
= J1dl, o(B, By) = sup {la—b|™": ac B, be B}, o(Ds, Be) = sup{la—b|™"

aeFB,, beD,}. The number ¢> 0 being arbitrary we may substitute
kAe for ¢ in (5.5). So we have proved that givene > 0,candr (o, <1< 0<1)
there exist positive numbers ¢, = ¢;(c, 7) and v, = %y(e, g) such that

(5.5)  |f—f,) < Mfw)ey(o,r)e Fn—tto—e)  zeD., weF,v=v,.

Given 7 (g, < T < 1) we may chose o and ¢ in such a way that ¢, <t
< o<1 and o—7—e> 0, whence it follows that f,—f in D xF.

The proof of (a) is concluded.

We proceed to the proof of (b). Observe that (5.5’) implies
(5.8) Q. < My w)-c(o,t)e"*—tto-a)  zeD,, weF,v=v,

where g, <1< 06<1, ¢>0, ¢(c,7) = ¢(0,1)(1+e*).
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Next observe that
L%, f* N p))'| = 109z, 7, B0, §=0,1,..,1,,
whence, after taking into account (5.1), (4.4) and (4.12), we get
£l < My(w) (v +1)0"[p(2)| "y 2eD, welU,v>1,
where M,(w) = sup {|f(z, w)|: z¢ E}. So, by Theorem 4.1,

Ifs] < My(w)(kv+1)e¥, zeD,, weU,r>1.
Hence

(5.7 10,] < My(w)(r+1)(L+e *)ekir | 2eD,, welU, v>1.

Let @ be an arbitrary subdomain of U such that F ¢ G, (G, F) € (4,)
and |f] < M = const in (D xF) v (E xG). Then (5.7) and (5.6) may be
written in the form

(5.8) 10, <2M(kv+1)e¥, zeD,, we@, v>1,
(5.9) 1@, < Mc¢(o,7)exp[—Fklv(c—e—1)], z2eD,, weF,v>y,.

Without loss of generality we may assume that ¢ > 1, M > 1. Given
any fixed ze D, and » > »,, the plsh. function V(w) = Log[|Q,|e~**/
/(kv +1)] is bounded by Log (2M) in G and by — kiv(c—¢) -+ Log (Mc)
in 7. Hence by the Two Constants Theorem (after obvious transformations)
we get

1@, < 2¢M (kv +1)ekbllo—e)—s—(o—hcw,F)) = 2z eD,, we@.

This concludes the proof of (b).
To show (c¢) put g,(z, w) = Q,(2, w)e~*=/(ky +1) and observe that
by (5.6)

lim sup i/'max 92, w)| <e ¥, wekF.
r—>00 zeD;
Next, by (5.7) the sequence {g,} is uniformly bounded in D, xU.
Hence by Theorem 2.1 for every ¢ > 0 there is an open neighborhood ¥,
of F and there is a positive number M, (depending also on 7) such that

1Q,] < M (kv+1)e~*0-—a,  zeD,, weV,, v=>1.

Given 7 (g <t < 1) we may take &£ > 0 so small that 1 —7—e&> 0.
Hence the series ) @, is uniformly convergent in D, xV,. By the arbi-
trariness of z this concludes the proof of (c).

Remark. Inequality (5.5) may be treated as a contribution to
the theory of interpolation and approximation by rational funetions
presented in Chapter IX of [29].
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Since every plane domain may be approximated by an increasing
sequence of relatively compact subdomains satisfying (r,), so (¢) implies
the following

COROLLARY 5.1. Let D be a domain in the complex z-plane and let U
be an open set in the space C" of variables w = (w,, ..., ws). Let E and F
be compact subsets of D and G, respectively, such that d(E) > 0 and F € (L).
Then every function f which is separately analytic in X = (D xF) v (E xU)
and bounded on every compact subset of X may be continued (uniquely) to
a function ftmalytic in a neighborhood V of D xF.

Indeed, let {D;} be an increasing sequence of relatively compact
[=,°] .
subdomains of D such that D;e(r,) and D = | JD;. By (¢) there is
1

a function f; analytic in D; xV;, where V; is a neighborhood of F and
fi =fin D; xF. We may assume that V,;,; C V; and that every component
of V; (j =1,2,..) contains a point of F. The set

Vv = U (D; xVy)

is a neighborhood of D x F. Given (2, w) ¢ V we define f~(z, w) by f~(z, w)
= fi(2, w), where j is an arbitrary integer such that (z, w)e D; xV;. To
be sure that this definition is correct we have to show that fy(z, w) = fy(z, w)
if (z,w) e (Dp xV,) n(DgxVy) (p #¢q). We may assume that p <gq.
Then the functions f, and f, are both analytic in Dy xV, and f, = f; in
D, xF. Hence by Remark 1.1 f, = f; in Dy XV,. By the same reasoning

if f, and 7, are analytic functlons in ¥V and fl f. in D xF, then f, = f,.
Hence the continuation f of f is unique. -

§ 6. Locally bounded separately analytic functions. \We
shall start with the following

LEMMA 6.1. Let D be a plane domain satisfying (r,) and let E be a com-
pact subset of D such that 0  (L). Let @ be a domain in C", let F be a compact
subset of G and let (G, F) ¢ (A,). Finally, let f(z, w) = f(z, wy, ..., wy) be
a separately analytic function in X = (D xXF) v (E X&) such that

(1) fl<M in X.
Then 1° f is continuable to an analytic function f in
2 ={(z,w) e DXG: hp(z, E)+he(w, F) <1},
20 |fl < M in Q.

Proof. Ad 1°. By the Approximation Lemma there exists a se-
quence {Q,} of analytic functions in D xG such that

flz, w) = ZQ z,w) in DxF
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and

(6.1) IQ'I .MG O' T) kv +1)e—kﬁ.r[cr e—1—(0—e)hc(w, F)]
zeD,, ’MJGG, Y=,

where ¢> 0, g, <7< 0 < 1. Since oF ¢(L), we have o, =0. Take an
arbitrary 7 (0 < v < 1) and 6 (0 < 6 < 1) such that 7+ 6 < 1. Then there
exist ¢>0 and o (r<o<1) such that 6—e—71—(0—¢e)0 > 0. This
implies that the series ) @, is uniformly convergent in D, X Gy, where
D, = {z e D: hp(z, B) <7} and Gy = {w ¢ G: ho(w, F) < 6}. By the arbi-
trariness of = and 6 the function f 2 @, gives the analytical continuation
of f into Q.

Ad 2°. Suppose inequality 2° is not true. Then there exists (a, b) ¢ 2
such that M, = lf(a, b)|> M. So the function ¢(z, w)=1/[f(z, w)—f(a, b)1
satisfies all the assumptions of Lemma 6.1 with (i) replaced by |g|
<1/(My— M) in X. By 1° the function g is continuable to an analytic
function g in £. The point (a, b) does not belong to X, in particular,
a ¢ E. There is v (0 <t < 1) such that g(z, b) is analytic for z e D, and
g(z, b) = 1/[f(z, b)—fla,b)] for ze¢E. By the principle of analytical
continuation g(z, b) = 1/(f(2, b)— f(a, b)] for z € D,. This equation cannot
hold for z = a, because the right-hand side funection is not analytic for
2 = a. This contradiction ends the proof of 2°

THEOREM 6.1. Let D be an arbitrary domain in the complex z-plane
and let E be a compact subset of D such that OF € (L). Let G be a domain in
the space C" of m complex variables w = (w,, ..., wy). Let F be a compact
subset of G and let (G, F) e (A). Let f(z,w) be defined, locally bounded and
“separately analytic in X = (D xF) v (F X Q).

Then f is continuable to an analytic function f in

Q = {(#,w) e D xG: Hp(z, E)+Hg(w, F) < 1}.

The domain 2 is the envelope of holomorphy of X.

Proof. Let {D;} be a sequence of relatively compact subdomains
of D such that ECD;C D;4y, D = UD and D; satisfies (r,). Let {G,}
be a sequence of relatively compact subdomams of & such that F C Gy
CGin,y G = UG, and (G, F)e(4,). By Lemma 6.1 the function f is
continuable to an analytic function fi in

Q; = {(2,w) e D; X Gy: hp(z, E)+hg(w,F) <1}, j=1,2,..

Since the function Vj(z,w) = hp,(2, E)+he(w,F) is plsh. in 2,

Vi<1in £; and lim V;(z,w) =1 for (a,d) ed2;, so £; is a domain
(2,w)—{a.b)
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of holomorphy (see [8]). But 2 = lim £;, so by Behnke-Stein Theorem
is also a domain of holomorphy. The function f(z,w) = lim fi(z, w),
(z, w) e 2, gives the required continuation.

COROLLARY 6.1. Let the assumptions of Theorem 6.1 be satisfied.
If Hp(2,E) =0 in D or Hg(w,F) =0 in G, then f is conlinuable to an
analytic function [ in D x G and D x @ is the envelope of holomorphy of X.

§ 7. The assumption of the local boundedness is super-
fluous. To begin with we shall prove the following

LEMMA 7.1. Let D be a domain in the z-plane. Let E be a compact
subset of D with d(E) > 0. Let F' be a compact subset of the w = (w,, ..., wy)-
space with F e (L). Let U be an open neighborhood of F. Let f be a separately
analytic function in X = (D xF) v (ExU).

Then f is continuable to an analytic function in a neighborhood of D X F'.
In particular, f is locally bounded on D XF.

Proof. Let G be an open neighborhood of F relatively compact
in U such that each component of G intersects #. For every j =1, 2, ...
define E; by

E; = {z < E: sup |f(z, w)| <j}.
we@

Then E;CE;.;, E =] E;. We claim that E; is closed. Indeed,
let 2, e E; (K =1,2, ...), 2, = lim 2; and let @ be a fixed component of G.

k—o0
Then |f(zx, w)| <j, wew, k =1,2, ... By the Montel theorem on normal
families of analytic functions there exists a subsequence f(zz,, w), s=1,2,...
converging uniformly on every compact subset of w to an analytic function
g(w). The function fi(w) = g(w)— f(2y, w) is analytic in w and fi(w) =0
in F n w. By Remark 1.1 fi(w) =0 in w. By the arbitrariness of o we
have f(w) =0 in G, i.e. j’}imf(z;.,, w) = f(2,, w) in G. Hence 2z, € E;.

We have proved that E; (3 =1,2,..) is closed. Since E = | ] E;
1

and d(#) > 0, there exists j, such that d(E;,) > 0. Put E, = E;,. We
have

(7.1) lflzyw)| < M =jo, zeEy, weG.

So, by Corollary 5.1, the function f is continuable to an analytic func-
tion in an open neighborhood of D xF.

COROLLARY 7.1. Let D, E and U be the same as in Lemma 7.1. Let
f(z, w) be defined in D XU and let

(i) for every fized a ¢ E the function f(a,w) be analytic in @,
(i) for every fized b e U the function f(z,b) be analytic in D.
Then f is analytic in D x U.
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Indeed, given any fixed point b € G let F' denote a closed polycilinder
F ={weC": |wg—Dbe| <rey, k=1, ...,n} contained in U. By Lemma 7.1
the function f is analytic in D xF. Hence, by the arbitrariness of be U
the function f is analytic in D x U. _ :

This corollary is equivalent to Proposition 1.1 of [28]. On the
other hand, it follows from [28] that in Lemma 7.1 one cannot drop the
assumption that d(E) > 0.

TarorEM 7.1. Let Dy be a domain in the complex z-plane (k =1,...,n).
Let Ey be a compact subset of Dy such that 0Ey e (L). Let f be deffined n

(*) .X = ('Dl XE-Z X ... XEn) .. U (E1 X ese X.En_l X .Dn)

and seperately analytic in X, i.e. for each fized (a,, ..., Gx—1, Qxi1y -ory @n)
€ (Ey X . X Ep 1 X Eg1 X 1. X Ep) the function f(ayy .oy Gr_14 2ky Qraay ey On)
18 analytic in D (k =1, ..., n).

Then

1° f is continuable to an analytic function f in
(7.2) 2 ={zeD, X...xDu: hp(21, B1) + ... +hp,(2n, En) < 1},

2° 0 is the envelope of holomorphy of X.

Proof. (Induction with respect to »). If » =1, Theorem 7.1
is obviously true. Suppose it is true in the case of » variables. We shall
prove that it is also true for n+1 variables. Indeed, by the induction
assumption there exists a function f; defined in

X, = (B, x@) v (D, xF),

where @ = {w € D, X ... XDy y1: hp(Wyy Ey)+ ... + hppoy(Wnt1y Eny1) < 1} and
F =E, x...xEp;,, such that f; = fin D, X F and f, is separately analytic
in X;. In view of Theorem 1.1- we have F ¢ (L). Hence, by Lemma 7.1
the function f; is locally bounded in D, xF and, consequently, the func-
tion f is bounded on every compact subset of D, XF = D, XE, X ... XEp4,.
Changing the numeration of the variables we are derived to the conclusion
that f is locally bounded in X.

We claim that f; is locally bounded in X,. We have only to prove
that f; is locally bounded in E, X G. Let Dy (k = 2, ..., n) be a relatively
compact subdomain of D; satisfying (r,) and ebnta,ining E; in its interior.
Put

X, = (Doszz,x xE,,H)x_ oo X (By Xeoo X Ea X Donv1)

Then
IfI< M =const in E;XX,,
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M depending on Dy (kK =2,...,n+1). For every a, ¢ E;, the function
fila,, w) is an analytic continuation of f(a,, w) into

Go = {w € .Doz X oaes XDO,ﬂ-l-l: hDoz(wZ’ EZ) + eve +hDo'”+l(wn+l, .En-]-l) < 1} .

By the standard reasoning used to prove 2° of Lemma 6.1 we con-
clude that |fi(e,, w)] < M in G,. By the arbitrariness of Dor (k =2, ...,n+1)
and of a, € E, we get the local boundedness of f, in E, x G. Hence, by virtue
of Example 3.2 and of Theorem 6.1, the function f, is continuable to an
analytic function f; in . But f; =fi=fin E, X... X Bpyy, s0 the func-
tion f, represents the analytic continuation of f into £.

By 1° and by Remark 3.1 the domain 2 is the envelope of holomorphy
of X. Theorem 7.1 is proved.

Observe that 2° of the last theorem extends a result contained in [2]
concerning the analytical extension of a union of two confocal elliptical
polycilinders. _ _

In [27] Theorem 7.1 has been proved under the assumption that Ep
is a line segment in D; and D; is symmetric with respect to the line in
which E; is contained. In [27] we used a theorem on expansion of functions
analytic in a line interval into a series of Chebyshev polynomials instead
of the Approximation Lemma.

COROLLARY 7.2. Let the assumptions of Theorem 7.1 be satisfied.
Moreover, let hp,(2x, Ex) = 0 (e.g. Dx = C) (k =2, ..., n). Then the function f
may be conlinued to an analyiic function in Dy X ... X Dp. In particular,
D, X ... X Dy 18 the envelope of holomorphy of X.

We shall now prove that the assumptions of Corollary 7.2 may be
weakened. We shall first prove three lemmas.

LEMMA 7.2. Let G =G, X...xGp, where G; 18 a domain in the
w;-plane. Let F = F, X ... xFy, where F; is a compact subset of G; with
d(F;) > 0. Put h(w) = hg(wy, Fy)+ ... + hg,(wn, F»n), w € G.

If U(w) is a plsh. function in G such that U< m on F and U< M
n G, then

Uwysm+(M—m)h(w), we@G.

This lemma may be easily proved by a reasoning quite analogous
to the reasoning used in the proof of (3.5).

LEMMA 7.3. Assume that:

(a) D is a domain in the z-plane;

(b) E i3 a compact subset of D and d(E) > 0;

(¢) G =G, x...XGp, where G; is a domain in the w;-plane;

(d) F =F, X... xFy, where F; is a compact subset of G; and d(F;) > 0,
(e) f(z, w) is defined and separately analytic in X = (DX F) v (EXG).
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Then for every relatively compact subdomain D, of D there are compact
subsets E, of E and Fj, of F; (j =1,...,n) such that 1° d(E,) > 0 and
d(Fj) >0 (j =1, ...,n), 2° for every relatively compact subdomain o of G
there is a constant M such that

Ifl<S M in (DyxFo) v (ByXw) (Fo=FgXFpX...xFq).

Proof. Let {G°} be a sequence of relatively compact subdomains

of @ such that FCG°C ¢°*", G = | JG°. We shall first prove that there
1

exists a sequence {F,} of compact subsets of E such that

1°E=EDE,D.., d(B;)> d(E;_)exp (271, j =2,3, ...,

2° |f(z,w) < M, = const, (2,w) e EsxG, s =2,3, ...

Put E, = E. Suppose E,, ..., Ex_; are closed subsets of E already
defined in such a way that B, D K, D ... D Ey_y, d(E;) > d(E;_;)exp(—27""")
and [f(z, w)| < M; = const for (z,w) e B; Xx& (j =2, ..., k—1). Put

By ={2eEr_y: sup |f(z,w)| <7}, r=1,2,..
weGk

By Montel’s theorem and in view of Remark 1.2, E,, is closed and
\_ Exr = Ex_,. Therefore, by Lemma 1.1 lim d(Ey,) = d(Er-,). Take
r=1

r = r(k) so large that d(Ex)> d(Ey_,) exp 2 %", Then E,, ..., By = Ex,
are the first ¥ members of the required sequence. By the induction we

get the sequence satisfying 1° and 2° Put E; =\ Ex. Then d(E,)
1
> d(E)e !> 0 and

|f(z, w)] < Mg=const for (2,w)e E,xG, s =2,3, ..

Hence, f is bounded on every compact subset of E, x G.

Let D, be a relatively compact subdomain of D. Without loss of
generality we may assume that for every ae¢#; (j =1, ...,n) and for
every r> 0 the set F; ~ A(a,r), where A(a,r) = {z: \w;—a] < r}, has
the positive transfinite diameter. Put

F° ={wek: sup |f(z,w)| <s}, s=1,2,..

ZEDo

The set F* is closed, F°C F**! and F = |  ¥°. By the Baire theorem
. 1

one can find s and a polycilinder P = {we C": (wj—a;| <7;,j =1, ..,n}
with the center a = (ay, ..., ay) € F and with radii 7; > 0 such that
(PAF)CF.PutFy, =P F° Fjo = {w; e Fy: lwj—a;| <7}(j =1, ..., n).
Then d(Fj) >0 (j =1, ...,n) and

If(z,w)| <s for (z,w)eDy,xF,.
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The sets K, and Fj, (j =1, ..., ») have the required properties.

LEMMA 7.4. Assume that conditions (a), (b), (c¢), (d) and (e) of
Lemma 7.3 are satisfied. Moreover, assume that

(£) hgw;, F;) =0 in G; (j =1, ..., n);

(g) for every relatively compact subdomain w of G there is a constant
M= M(f, w) such that

Ifl<M in (DXF)v (EXw).

_ Then there exists a (unique) function f analytic in D x G such that
f=f1im X.

Proof. Let {Gs}s-12.. be a sequence of compact subdomains of G;
such that F;C G;sC G4, G; = | Gjs, Gjs is regular with respect to

8s=1

the classical Dirichlet problem. The function

ho(w) = ha, (w1, Fr) + oo 4 hgpo(Wny Fn) (s=1,2,..)

is plsh. in
GF=G,x..xGs (s=1,2,..)

and lim hg(w) =0 for w e G, the convergence being uniform on every

compact subset of G.

By the proof of the Approximation Lemma there is a sequence
{@.(z, w)} of amnalytic functions in D x G such that

(i) the series ), Q, converges to f in DX F,
(ii) 1Q,] < 2Mykv+1)e*, zeD,, we@ (s =1,2,..), v=1,2, ...,

(iii) 1Q,| < Mse(o, 7) exp [—kiv(c—e—1)], 2e D,y weF, v >
= vy(e,0), §=>1, where ¢>0, go<T<o<1l, 0<o0y=0yD,E) and
M, = sup {|f(z, w)|: ze D, w e G°}.

Given any fixed 2z € D, and » > v, the function V(w) = Log[|@,|e—**/
[(kvy+1)] is plsh. in G and satisfies the inequalities

V(w)<m = Log (Msc)—kiv(c—e), welF,
Viw)< M =Log (2Ms), weG.
Hence in view of Lemma 7.2 we get
Vi{w) < m+(M—m)hs(w) in G°,
and after obvious transformations,
1Q,] < (kv 4+1)e(o, t) Msexp (— kMv[o—e—1— (60— &) hy(w)]) ,

8
zeD,, we@ , v=v,,8>1.
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Given 7 {0, < T < 1) and a compact subset @ of G we may find o
(r<a<1), e>0, and ¢ such that

c—e—1—(0—&)h(w) >0, wew.

Therefore the series ), @, is uniformly convergent in D, X w. By the
arbitrariness of o and of 7 (g, < T < 1) the series converges uniformly
on every compact subset of Dx@. Its sum f—= ) Q, gives the required
continuation of f.

From the last two lemmas one easily gets the following

"THEOREM 17.2. Assume that: (1) Dy ts a domain in the zi-plane
(k=1,...,n), (2) Ex is a compact subset of Dy and d(Ex)> 0 (k =1, ..., n),
(3) hpzx) =0 in Dy (k=2,..,n) and (4) f is separately analytic in X
given by (%) (see Theorem 7.1).

Then f may be continued to an analytic function f in the product
D, X ... xDy. In particular, this product is the envelope of holomorphy of X.

CorOLLARY 7.3. If Ex C Dg, d(Ex) > 0 and Dy is identical with the
whole zx-plane (k =1, ..., n), then every function f defined in X and entire

with respect to each variable zx separately is continuable to a function analytic
in C™.
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