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Introduction. In 1924, W. Sierpinski [13] proved that every
uncountable Borel set contains a perfect subset. In the proof he made use of
some multivariate function of sets, by means of which R. Telgdrsky [15]
defined a topological game, where the function becomes a winning strategy
of Player II. That game is an infinite positional two-person game with perfect
information. We shall call it the game of Sierpinski and denote by S(X, Y).

Let X be a subset of a topological space Y. The players construct a
decreasing sequence of uncountable sets A, > B, > A, o B, o ..., where 4,
(B,) is chosen by Player I (resp., Player II). Player II wins the play
(A,, B,, A,, B,, ...) of the Sierpinski game S(X, Y) iff N B, < X.

The game S(X, Y) points out some common features with the famous
Banach-Mazur game (see [10]) and with its generalizations studied by J. C.
Morgan II [8].

In this paper we shall study a modified game of Sierpinski in which the
players choose countable and dense in themselves sets, and we shall establish
some relationships of this game to the Choquet game (see [1], [11], [16],

[17], [18], [19])).

Definitions and notation. A subset A of Y is said to be a Q-ser if
A =x Q,ie. A is homeomorphic to the set Q of all rational numbers. It is well
known that each countable and dense in itself subset A of a metrizable space
is a Q-set ([12]; [7)).

We define the modified game of Sierpinski So(X, Y) as follows. Let X be
a subset of a metrizable space Y. Player I chooses a Q-set (or the empty set)
A, < X. After that Player II chooses a Q-set (or the empty set) B, — A,.
Assume inductively that A, o B, o... > 4, o B, have been chosen. Then
Player 1 chooses a Q-set (or the empty set) 4,,, < B,. After that Player Il
chooses a Q-set (or the empty set) B,,; < A,.,. The player who first
chooses the empty set loses the play (4,, B, 4,, B,, ...). If all sets 4, and B,
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are Q-sets, then Player II wins the play (A,, B,, 4,, B,,...) of the game
So(X, Y) if N B, < X; otherwise Player I wins.

A strategy of Player I is a function s defined for all finite (including
empty) decreasing sequences (A4,. B,..... 4,. B,) of subsets of X so that
s(0)=A4, cX, and s(4,,B,,...,A,,B)=A4,,, <B, for each neN. A
stationary strategy of Player I is a function ¢t defined for all subsets of X and
for the empty set such that (@) = A, < X and t(B) = A < B. Of course, if ¢
is a stationary strategy of Player I, then the function s defined as s(@) = t(0),
s(A,, By, ..., A,, B,) =t(B,) is a strategy of Player I. A strategy and a
stationary strategy of Player II can be defined similarly.

In this paper we shall use the following notations. I17S,(X, Y)
(resp. I17So(X, Y)) means that Player I (resp. Player II) has a winning
strategy in the game S,(X, Y). I ﬂSo(X, Y) (II ﬁSo(X, Y)) means that
Player I (resp., Player II) has a stationary winning strategy in the game
So(X, Y). The game Sy(X, Y) is said to be determined (s-determined) if
either Player I or Player Il has a winning strategy (resp., a stationary
winning strategy) in S, (X, Y).

It follows directly from the definition of the game S, (X, Y) that Player
I wins the game provided that X is a scattered set (i.e., if X does not
contain a dense in itself subset).

G. Choquet in his lectures on analysis ([1], p. 116) considered the
following game, denoted here by G(X, Y). Let Y be a topological space and
X c Y. Player 1 chooses (x,, U,), where x,eX and U, is an open
neighborhood of x; in Y. After that Player II chooses an open set V in Y
such that x, e V; = U,. Assume inductively that (x,, U,), V;, ..., (x,, U,), V,
have been chosen. Then Player I chooses (x,,,, U,+,), where x,,,eXnV,,
U,:y < V,and U,,, is an open neighborhood of x,,, in Y. After that Player
IT chooses an open set V,,, in Y such that x,,,eV,,, < U,,,. Player 11
wins the play ((x;, U,), Vi, (x3, Uj), V5, ...) of the game G(X,Y) if
0 # 'V, < X; otherwise Player I wins.

The game G (X, Y) has been further studied by E. Porada [11] and R.
Telgarsky [16], [17], [18], [19].

Definition 1. A metrizable space X is said to be a strongly Buire
space (in the notation: X esB) if it contains no closed subset F, which is of
the first category in itself.

THEOREM 2. Let Y be a complete metric space and X < Y. Then the
following conditions are equivalent:

(0) X ¢sB.

(1) There exists a Q-set F = X with Fn X =F.

(2) There exists a Q-set F —« X with Fe Gs(X).

3 ITG(X,Y).

@ 11 G(x, Y).
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(5) 11So(X, Y).
6) 11 So(X, V).

Proof. (0) < (1). This is a theorem of W. Hurewicz ([5], p. 90).

(1) = (2) < (3) <= (4). For these equivalences we refer to Theorem
1.3 of R. Telgarsky [19].

(1) = (6). Let Fc X, FAX =F and F ~ Q. We shall define a station-
ary strategy s of Player I as follows: s(@) = A, =F. Let F={a,}2,.If B
is a set chosen by Player II, then we define s(B) = A4 such that A c B,
A=x(Q, diam A < min(l, $diam B) and a4, ¢ A, where ny=min{neN:
a,eB}. Then s just defined is a stationary winning strategy of Player I in
So(X, Y). For, if (A,, By, 4;,,B,,..) 1s a play such that A, =s(@) and
A,+, =5(B,) for neN, then ﬂB = ﬂA = |{p) and p # a, for each neN.

Hence p¢F and, moreover, p¢X because peF and FNnX =F. Thus
NB,N(Y—X) # 0.

(6) = (5). This is obvious.

(5) = (3). Let s be a winning strategy of Player I in Sy,(X, Y). We
shall define a strategy t for Player I in the Choquet game G(X, Y) as
follows. In the game S, (X, Y) Player I chooses s(@) = A,, A; c X, A, = Q.
In the game G(X, Y) we set t(0) =(x,, U,) such that x,eA,, U;>3x, and
diam U, < 1. Let ¥, be an open set chosen by Player II, where x, e V; < U,.
Now let Player II in So(X, Y) choose B, = A; NV, (note that B, = 4, and
B, = Q), and let Player I choose in reply s(4,, B;) = A,. We have 4, c B,
and A,>Q. In G(X,Y) we set t((x,, U;), V})=(x;, Uy) such that
x,€A,nU,, U, =V, and diam U, < 4. Let ¥, be an open set chosen by
Player II, where x,eV, < U,. Now, let in So(X, Y) Player II choose B,
= A, NV, (again, we have B, < A, and B, > Q), and let Player I choose in
reply s(A,, B,, A,, B;) = A;. Then A3 < B, and A3 > Q. In G(X, Y) we set
t((x1, Uy), Vi, (x3, Uy), V3)=(x3, U3) such that x;eA;nU;, Uy Vs,
diam U, <4, ..., and so on.

Since s is a winning strategy of Player 1 in the game So(X, Y), we have
ﬂB = {pl =« Y-X. But |q} = ﬂU —ﬂV :ﬂB = {p}; hence ¢ =p and

qe Y—X. Thus t is a winning strategy for Player I in the Choquet game
GX,Y).

By Theorem 2 the investigation of the game S, (X, Y) can be reduced to
the case where X is a strongly Baire space.
Now we shall show the following

TueoreM 3 (AC). If I11So(X, Y), then 11 1 So(X, Y).

To prove the theorem we shall use an unpublished construction(!) of

(') The construction of F. Galvin was published in [20].
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F. Galvin [2] which deals with a fairly general class of games; here his proof
is slightly modified and adopted for the game S,(X, Y).

Proof. Let t be a winning strategy of Player II in So(X, Y). Without
loss of generality we may assume that X is not scattered. Let T be the set of
all decreasing sequences (A4,, B,,...,A4,) of Q-sets so that B,
=t(A,, By, ..., A) for each k <n. Let < be a fixed well ordering of the
family of all Q-sets contained in X. We define linear ordering < in T as
follows: (A4,, By, ..., A,) <(A4}, B}, ..., A,)) if either m> and
(A,, By, ..., A) =(A}, B}, ..., A,) or there is a k <min{m, n] such that
(Al’ Bl’ sy Ak-l) =(A’19 ‘17 teey Al'z—l) and Ak < A;(

Let T(A) be the set of all (4,, B,, ..., 4,) in T with 4, = A. Now we
shall show that if 4 is a Q-set in X such that A—X # 0, then T(A) is well
ordered by <. For, suppose T(A4) is not well ordered. Then there is a
sequence

(AP, BP, ..., A%): ke N} = T(A)

so that
(A(|k+.”, B(1k+l), e As:k++1{)) <(A(lk)’ B(k), . A(k ))

for each ke N. Now, there is a sequence k, < k, <... such that
k; k; + 1 k;+2 k: + 1 k;+2
Al )_A( ) A( ) _ (k; + 1) ki +2) _

and B™ =p%*" =gk
for each ie N. Notice that
(k.) = t(A(k.') (kg), e A:kg))

for each ie N. Let us put A4, = A4; *) and B, = ““') . Then (A,, B,, A,, B,, ..))

is a play of So(X, Y) consistent with ¢. Since A4; = A"“) Af:;)‘, = A, it follows

that ﬂ A; o A and therefore ﬂ A;n(Y—X) # 0. This is a contradiction.
i=1

Now we define a statlonary strategy s by setting s(4) = A if A = X and
s(A) =t(A,,B,, ..., A,), where (A,,B,, A,,B,;,..)=minT(A), if A4
— X # @. Finally, let (4,, B,, A,;, B,,...) be a play of Sy,(X, Y) such that
s(A,) = B, for each ke N. Without loss of generality we may assume that A,
—X # O for each ke N. Let us fix ke N. Then T(A4,) is well ordered and
s(Ay) =t(AP, BY, ..., A%,). Since

Bk = S(Ak) = I(A(k) (k) ey A:l))

and A,,, c B,, it follows that (AP, BY, ..., A%, By, Ax+1) € T(Ag+))
Hence

+1 k k k
(A$*D, BEY, L, AR (4P, BY, ..., AQ), By, Avsy)

Since
(A(lk)’ B(lk)1 ceey Ag&h Bk: Ak+l) <(A(lk)9 B(lk)’ o s:i))
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we have
(A(lk+l), B(,“'“, .. s::—+lg))_<(A(k) (k) cees Af,ﬂ,),
Hence we infer, as above, the existence of a sequence k, <k, <... such that
A"‘" _ Amﬂ) A:" it _ and B(k.) _ B(k i+ 1) B"‘ D et us put
A =A™ and B = B ‘). Since
(49, B, ... )_(A"‘" B*Y ..., Af,“"’) = (A%, BY» ..., A%
for each ne N, the play (A, ' ) 1s consnstent with t. Since A;

=A:“ Af:,", = A,, for each ie N, we have (\ A c (\ Aic X. Thus s is a

i=1 i=1

stationary winning strategy of Player II. (J
By Theorems 2 and 3 we get

CorOLLARY 4 (AC). 11So(X,Y) = 11 So(X,Y) and 11S,(X,Y)
« I f So(X, Y).

It follows that under the axiom of choice it is the same to investigate the
existence of a winning strategy or a stationary winning strategy,; also, the
problems of the determinacy and the s-determinacy of the game S, (X, Y) are
therefore equivalent.

Recall that a subset X of a seperable metric space Y is said to be
analytic if either X = @ or there is a continuous map from the space NV (of
irrational numbers) onto X. A subset X of a topological space Y is said to
be a Souslin set in Y if there is an indexed family {F(k,,...,k,):
(ky, ..., k)eN", ne N} of closed subsets of Y such that

X=U[N{F(ky,...,k): neN}: (ky, ks, ..)e NN,

THEOREM 5. If X is a Souslin set in a metrizable space Y so that X is a
strongly Baire space, then 111S,(X, Y).

Proof. Let X = {N{F(k,,...,k): neN}: (ky, ks, ..)e NV}, where
{F(ky, ..., ky): (ky, ..., k)€ N", ne N} is a regular system of closed sets in Y.

Let A, c X be a Q-set chosen by Player I. Then

AinX=U{NIFky,...,k)"nA;: neN}: (ky, ky, ..)eN"),

so A,nX c |JF(k)nA,. Now we claim that there is a k, e N such that
keN

Intg, .x(F(k;) N 4; 0 X) # @. For, if for each ke N we had
Intg, x(F(k)nA4; N X) =0

then () F(k)n A, n X = A, n X would be a set of the first category in itself.
keN

Since 4, "X is a closed subset of X, this contradicts XesB. So we
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have
and therefore

Bl = Al (\Intgl,\x(F(kl)ﬁ/Tl ﬂX)

is a Q-set contained in A,. Let us put s(4,) = B,. Let A, < B, be a Q-set

chosen by Player I. Then A,nF(k)nX < | F(k,, k)" A,. Similarly as
keN
before we can show that there is a k;e N such that

Intz, rup-x(Fki, k) " Ay 0 X) # 0.
We have
Ay Inty, pup-x(F(ky, k)0 A n X) # 0.
Hence
B, = Ay nInty, g,y -x (F ki, ko) N Ay N X)

is a Q-set contained in A4,. Let us put s(4,, B,, 4,) = B,.
Continuing in this manner we define the strategy s which is a winning
strategy for Player II, because

NB,cNF(k,,...k)c X. ™

Since Souslin subsets and analytic subsets of Polish spaces coincide
([7], p. 482) we get from Theorem 2 and Theorem 5 the following.

CoroLLARY 6a. If X is an analytic set in a Polish space Y, then
(8) X¢sB < 1155(X, Y) < I So(X, Y);
(b) XesB <= I1So(X, ¥) <= 1I f So(X, Y)

and thus the game Sy (X, Y) is determined, and, under the axiom of choice, it is
even s-determined.

Remark 7. Let Y =[0, 1]. It was announced by K. Gddel [4] and
proved by D. S. Novikov [9] that the axiom of constructibility implies the
existence of an analytic non-Borel set X such that Y— X is a totally imperfect
set. Then X esB (see [19]). Hence, by Theorem 5, we have the following
corollary. If we assume the axiom of constructibility, then there is an analytic
non-Borel set X < Y =[0, 1] such that II  So(X, Y).

Remark 8. By Theorem 5 it follows that if X is a G,-set in a
metrizable space, then 11 1S5,(X. Y). However for X being a G;-set we shall
prove that Plaver Il can achicve the win on his first move, and therefore
inf So(X, Y). This is an easy consequence of the following lemma.
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LeMMA 9. If X is a Gy-set in a metrizable space Y and A = X is a Q-
set, then there is a Q-set B <= A such that B < X.

Proof. Let X = (\G,, where G, are open sets in Y and G, > G, , for

each ne N. Then there are points b(—1), b(0), b(1)e A4 and open sets V(—1),
V(0). V(1) such that:
(i) b(ny)eV(ny), ny=-1,0,1:
(i) V(n)nV@n) = 0, nj,ny=—1,0,1, n; #nj;
(iii) V(n;) =Gy, ny = —1,0, 1;
(iv) diam V(n)) <1, n, = —1,0. 1.
Analogically, for every n;e{—1,0,1} there are points b(n,, —1),
b(n,, 0), b(n,, 1)e A and open sets V(n,, —1). V(n,.0), V(n,, 1) such that:
(1) b(ny, ny)eV(ng, ny), no=-1,0,1,;

@) V(ny, ny)) nV(ng, ny) = 0, ny,ny=—-1,0, 1, ny # nj;
(m1) V(n,, n}) Gy, np=-1,0,1;
(iv) diam V(n,, ny) <3, V(n, ny) = V(ny), ny = —1,0, 1;

(v) b(n,, 0) = b(n,).

When continuing this construction, we define the points b(n,, ..., n,)
and the open sets V(n,, ..., n) for (n,, ..., m)e!{—1,0, 1}* and ke N. Then
we set

B=!b(ng,....,m): (n,,....,n)e!l—1,0,1% keN).

Clearly, B is a Q-set contained in A. We shall show that B — X. Indeed, for
every keN,

Bc UV, ...,n): (ny,...,m)e!—1,0,1}*},
hence

B {WV(ny,....om): (ny,...,m)e!—1,0, 1}*.
Finally,

Ber{U{Vin, ....m): (ny, ..., m)e{—1,0,1}*}: keN}
cN!G;: keN) =X. ™

Let Y be a Polish space. From a theorem of W. Hurewicz ([5], p. 97) it
follows that if X < Y is a coanalytic set and X ¢ G4(Y), then X ¢sB. Hence,
by Theorem 2 and Remark 8, we obtain the following.

CoroLLARY 6b. If X is a coanalytic set in a Polish space Y, then
(a) XeG,y(Y) < 11 § So(X, Y);
(b) X¢Gy(Y) < 11 So(X, Y),

and thus the game So(X, Y) is s-determined.
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By Corollaries 6a and 6b we get

CoroLtARY 10. If X is an analytic or coanalytic set in a Polish space Y,
then the game So(X, Y) is determined and under the axiom of choice s-
determined.

Remark 11. It is easy to point out that if X, < [0, 1] is analytic and
X, = [1, 2] is coanalytic, then the game S, (X, U X, [0, 2]) is determined
(and under AC it is also s-determined).

Question (P 1320). Let X belong to the o-algebra generated by
analytic subsets of a Polish space Y. Is then S,(X, Y) determined?

Remark 12. G. Choquet [1] proved that if Y is a metrizable space,
then II ﬂ G(X, Y)iff X is an absolute G,-set.

Hence and by Theorem 2 and Remark 8 we have the following.

CoroLLARY 13. If Y is a complete metrizable space, then
116X, Y) < 11fS(X,Y),
I GX,Y) = 11§ So(X, Y).

By Theorem 5 and Remark 7, under the axiom of constructibility, the
above implication cannot be reversed. We shall show below that under CH
there is a non-analytic set which also disproves the converse implication.

LEMMA 14. Let X be a subset of a metrizable space Y and let A = X be
a Q-set. Then there is a Q-set B = A such that B is nowhere dense in Y.

Proof. Since Q ~ Q2 we have A x A% Let h be a homeomorphism
from A onto A% Let us pick any point pe A and let us set B = h™'({p} x A).
Clearly, B = 4 and B = Q. Since B is relatively closed and nowhere dense in
A, and A is dense in itself, it follows that B is nowhere dense in 4, and
therefore B (and also B) is nowhere dense in Y. [

Recall that a subset 4 of a Polish space Y is said to be a Lusin set if A
is uncountable and |4 N F| < N, for every nowhere dense set F — Y. Let us
note that under the continuum hypothesis each uncountable Polish space
contains Lusin set ([7], p. 525).

THeEOREM 15. If X is a subset of a Polish space Y, where Y—X is a
Lusin set, then 11 § So(X, Y).

Proof. Let A be a Q-set in X. We define a stationary strategy s for
Player II as follows. If 4 = X, we set s(4) = A. If A (Y—X) is countable
and nonvoid, then 4 n X is a G,-set in Y contained in X. Hence by Lemma
6b there is a Q-set B = A such that B < An X. Then we set s(4) = B. If
A ~ (Y- X) is uncountable, then by Lemma 14 there is a Q-set B = 4 such
that B is nowhere dense in Y. Since Y— X is a Lusin set in Y, it follows that
B n (Y- X) is countable. Again by Lemma 6b we find a Q-set C < B such that
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C c Bn X, and we set s(A) = C. Clearly, s is a stationary winning strategy
for Player II in So(X,Y) ™

Remark 16. One can show similarly as above that if Y—X is an
n-chain concentrated about a countable set (cf. [14]) or, if Y— X is concen-
trated of type n (cf. [3]), then II ﬂSo(X , Y).

By Theorem 15 and Remark 12 we have the following.

CoroLLARY 17 (CH). The games G(X, Y) and Sy,(X, Y) are not equi-
valent.

CoroLLARY 18. Let Y be an uncountable Polish space. If X < Y is a
Lusin set, then 1 ﬂSo(X , Y).

Indeed, since the Lusin set X is uncountable, it is not scattered. Hence
X contains a Q-set A. By Lemma 14 there is a Q-set B = A so that B is
nowhere dense in Y. Since X is a Lusin set, BN X is countable and,
moreover, it is a Q-set. If we put F = BN X, then the condition (1) of
Theorem 2 is fulfilled, so I { So(X, Y).

Remark 19. It is easy to see that a stronger version of Corollary 18 is
true: If E = X < Y, where Y is a Polish space and En X is a Lusin set in E,
then I f So(X, Y).

THEOREM 20. Let X be a subset of a complete metric space Y.

(@) If118,(X, Y), then Y— X contains a copy of the Cantor discontinuum.

(b) If I11So(X, Y), then X is scattered or X contains a copy of the
Cantor discontinuum.

The proof of part (b) is analogical to the proof of the Sierpinski theorem
(see [13]) and the proof of part (a) is similar to the proof of (b), so they are
omitted. ,

A subset X of an uncountable Polish space Y is said to be a Bernstein
set .if neither X nor Y— X contains a copy of the Cantor discontinuum.
Assuming the axiom of choice each uncountable Polish space contains a
Bernstein set ([7], p. 514). It is easy to check that each Bernstein set is a
strongly Baire space.

Since Bernstein sets in Polish spaces are not scattered, we have from
Theorem 20 the following.

CoroLLARY 21 (AC). If X is a Bernstein set in a Polish space Y, then
the game So(X, Y) is undetermined.

Remark 22. Let Y be a Polish space. The assumption that each
strongly Baire space of the class PCA is an absolute G4-set is consistent with
ZFC (see [6], p. 1063). Therefore, the determinacy and s-determinacy of
So(X, Y) for each PCA-set X c Y is consistent with ZFC. Furthermore, the
assumption that each strongly Baire space is an absolute G,-set is consistent
with ZF + DC (see [6], p. 1063). Hence it follows that the determinacy and s-
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determinacy of the game S, (X, Y) for each subset X of a Polish space Y are
consistent with ZF+DC. From Corollary 21 it follows that the axiom of
dependent choice (DC) cannot be replaced by the axiom of choice.

Finally, we shall give several examples which testify to the fact that the
class of sets for which the game S,(X, Y) is determined is not closed for
unions, intersection or complements.

Example 1 (AC). Let I be the unit interval [0, 1]. We shall show
that there are sets X,, X, < I such that I11Sy(X,, I), 11So(X,, I) but the
game So(X, I), where X = X, U X,, is undetermined.

Let B be a Bernstein set in I. Let us set

X, =(0,31nQu(3, §1nP U3 11nB),
X,=(0.41~rPu(3. 31O u(E. 11~ B).

where P is the set of irrational numbers. Then X,, X, ¢sB, so I1Sy(X,, ])
and ITSo(Xz, 1) We have

X=X,uX,=[0,%u(Z, 1]1nB).

Since X esB, then (11 So(X, I)). If I11So(X, I) and A4, is a Q-set in [$, 1]
chosen by Player I, then similarly as in the proof of Theorem 20, one can
show that [$, 1]~ B contains a copy of the Cantor discontinuum. This is,
however, a contradiction with the assumption that B is a Bernstein set.
Hence (111 S0 (X, D).

Example 2 (AC). There exist sets X,, X, < I such that I11Sy(X,, )
and 11S,(X,,I) but the game S,(X, I), where X = X; nX,, is unde-
termined.

Let

X, =(0,31nQ (3 §1B),
X,=([3,$1nBu(3, 11n0),
where B is a Bernstein set in I. Then X,, X,¢sB, so 11S,(X,, ) and

11S0(X;,I). We have X =X, nX,=[3,4]1nB and by Corollary 21 it
follows that the game S, (X, I) is undetermined.

Example 3 (AC). There is a subset X of I such that 11 S,(X, I) and
the game So(/— X, I) is undetermined.
Let B be a Bernstein set in I. Let us set

X =(0,31nQu([} 11~ B).

Then X ¢sB, so 11So(X,I). But I-X =([0,3]~nP)n([3}, 1]~ B°) and
I-XesB, so 1(I1So(I—X, I)). Similarly as in Example 1 one can show
that (I 1So(I — X, I)). Hence So(I — X, I) is undetermined.

Remark 23. One can prove similar results for the following
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modification of the game S,(X,Y): Player II wins the play
(A;, By, A3, B,,..) if @# (B, X or A, = @ for some ne N; otherwise

Player I wins.
Note that if Y is a complete space, then the games are equivalent.

I would like to express my deep gratitude to Professor Rastislav
Telgarsky for his attention and invaluable help during the preparation of this
paper.
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