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We describe a new approach, based on an equivariant Liapunov-Schmidt reduction, to discuss
the bifurcation of periodic solutions near some nontrivial periodic solution of symmetric systems
depending on a parameter. We describe in detail some of the elementary bifurcations that can
occur in such systems; these bifurcations include period-doublings and orbit-pitchforks.

1. Introduction

We consider one-parameter autonomous systems of the form
(1.1); x = f(x, 4)

under the following assumptions:

(@) f: R"xR —R" is (sufficiently) smooth;
(®) f(yx, A) =vf(x, A), Vyel, where I' is a closed subgroup of O(n)
= {yeLRYWy=1}.

We are interested in secondary bifurcations of periodic solutions of (1.1); by
this we mean the bifurcation (as 4 is changed) of periodic solutions from a
nonconstant periodic solution X, (¢) of (1.1),,, for some 4, €R. (Hopf bifurca-

tion describes the bifurcation of periodic solutions from a constant solution.)
Because of the equivariance condition (ii) also yX,(t) is a periodic solution of
(l.l)lo'for each yerl'; we make the following assumption:

(© C=0 := {yXo(®)lt R, y€eT'} is a one-dimensional submanifold of R".
This hypothesis irﬁplies that 50 consists of a finite number of periodic orbits
of (1.1),; it excludes the case of a higher-dimensional manifold foliated by

periodic orbits, obtained one from the other by the action of the symmetry
group I'. We also restrict our attention to periodic orbits near C, and having
a minimal period near Np,, for some N > 1 and with p, > 0 the minimal
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period of the given solution X,. In cas¢ N =1 we will talk about orbit-
bifurcations, N = 2 corresponds to period-doubling, and N > 3 to subharmo-
nic bifurcation.

In the case of a trivial symmetry (ie. I' = {Id}) there are for one-
parameter problems of the form (1.1) only two bifurcations which appear
generically, namely the turn (a special case of an orbit-bifurcation) and the
simple period-doubling (see further for a more precise description). For
nontrivial symmetries we expect a more complicated behaviour, arising from
the fact that solutions, and in particular periodic solutions, carry a certain
symmetry which can break at bifurcations. The aim of this paper is to
describe some of the bifurcations which can arise in such symmetric systems.

As a first step we have to find a way to describe the symmetry of a
given periodic solution Xx(t) of (1.1);. We can do this by introducing the
following subgroups of I':

1.2 K:={yerl| yX(t) = X(t), VteR}
and
(1.3) H:={yell y(€)=C},

where C:= {X(t)| t €R} is the orbit of X. By the uniqueness of the solutions
of (1.1) we see that a given y eI” will belong to K if and only if yX(t,) = X(to)
for some t, €R, and to H if and only if yX(t,) = X(¢,) for some ¢t,, t; €R. We
call K the spatial symmetry of X, and H the orbital symmetry. It is clear that
K is a subgroup of H; in'fact, denoting by p > 0 the minimal period of X,
there exists a group homomorphism 6: H > S':= R/Z such that

(1.4) yX(t) =%(t+0(y)p), VteR, VyeH;

we have then that K =ker§. It follows that K is a normal subgroup of H,
and that H/K is isomorphic to either Z, :=m~!Z/Z for some m > 1, or to
S'; in case H/K = S! we say that X is a rotating wave solution. The symmetry
of the periodic solution X is completely described by the orbital symmetry H
and by the homomorphism 8: H —S* appearing in (1.4).

Let now 4, €R and X, (t) a nonconstant periodic solution of (1.1),, such
that (c) holds. Denote by K, and H, the spatial, respectively orbital
symmetry of X,, and by 8,: H, —»S' the corresponding homomorphism, i.e.
we have

(1.5) Yo () = X(to+ 0o ()po),  VieR, VyeH,.

The standard approach for the study of bifurcations near the orbit Co
:= {%o () teR} of X, is by the introduction of a Poincaré map, as follows.
One takes a section S at a point %, (to) €C,, such that S is transversal to C,
and S N Cy = {X,(to)}. Then the Poincaré map n: S xR — S is defined as the
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first return map on S under the flow of (1.1),. Periodic solutions of (1.1),
near C, and with minimal period near Np, are then obtained from the fixed
point equation

(1.6) ¥ (x, A) = x,

where n': SxR—>S (I>1) is defined recursively by n! ==, =n'*!(x, A)
= n(n'(x, 4), 4). Since we want to keep track of the symmetries it is
important to see how the symmetry of X, is reflected in the Poincaré map =.
This is no problem for the spatial symmetry K,: one can choose the section
S to be K-invariant, and then 7 is Ky-equivariant. For the orbital symmetry
things are more complicated, since it is clearly impossible to make =
equivariant with respect to H, (or some group isomorphic to H,). One way
out is by use of “partial” Poincaré maps, as constructed by Fiedler in [2]. In
this approach, however, one has to treat the cases Hy/K, = Z,, and Hy/K,
=~ S! separately; also one does not have the nice “equivariant” setting which
has now become standard for bifurcation problems with symmetry (see e.g.
[4] or [6]).

In an earlier paper [7] we have proposed a different approach which
does not have these shortcomings; in section 2 we briefly outline this
approach, which leads to a reduced problem whose equivariance reflects the
symmetry of X,. In section 3 we make a kind of “generic assumption”,
outline the form of the corresponding bifurcation equations, and give then a
detailed description of some of the secondary bifurcations which one obtains
from an analysis of these bifurcation equations. We thereby put the emphasis
mainly on the qualitative aspects of the bifurcation, in particular the symme-
try of the bifurcating solutions, and much less on the computational aspects
of the problem. For those we refer to a forthcoming paper in collaboration
with B. Fiedler.

2. Reduction to equivariant bifurcation equations

Let X, be a periodic solution of (1.1),, for some 4, €R, with minimal period

po > 0; we assume that the hypotheses (a){(c) are satisfied. Fixing some N
> 1 we want to describe, for A near 4,, all periodic solutions of (1.1) with a

period near Np, and an orbit near C,.

Let Z (respectively X) be the Banach space of all C° (respectively C!)
1-periodic mappings z: R — R", endowed with the appropriate supremum
norms. Define x,€X and o,€R by

(2.1) Xo(t) :=Xo(Npot), 0o:=(Npo)™';
then we have M (x,, A, 60) =0, where M: X xR> > Z is defined by
(2.2) M(x, A, 0)(t):= —ax(t)+f(x(t),4), VteR.
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Now the group I' xS! acts on Z by

(23) (v, @)z(t):=yz(t—¢), VteR V(y, p)el xS,
and M is equivariant with respect to this action:

(2.4) M((y, 9)'x, 4, 0)=(y, @) M(x, 4, 0), V(y, p)el xS
Therefore the equation >

(2.5) M(x,2,0)=0

has not only the solution (x,, 49, 6¢) €X % R?, but a whole orbit of solutions
given by C, x {40} x {60}, Where Cq:= {(y, ©)-xol (v, ®) €I’ xS*} is the orbit
in X generated by the group I' xS! acting on x,. Our problem reduces then
to that of finding all solutions (x, 4, ¢) of (2.5) in a neighborhood of C,
x {Ao} x {060} in X x R?; to each such solution (with ¢ > 0) there corresponds
a 1/o-periodic solution of (1.1),, given by X(t) : = x(ot); if ¢ is near oy, then
the period 1/¢ is near Np,. Moreover we will see later that the symmetry of
X (described by the spatial symmetry K, the orbital symmetry H and the
homomorphism §: H —S') can be completely determined from the isotropy
subgroup of x, ie. from

(2.6) Z:={(y, p) eI xS'| (y, 9) - x = x}.

We will denote the isotropy subgroup of our basic solution x, by Z,.
Because of the condition (c) the tangent space to C, in X is one-dimensional
and spanned by X,: it follows that x, eker L,, where Lo := D, M (xo, Ao, 00).
We can define in Z a projection P on this tangent space by

(2.7) Pz:= (z, xo) (%o, Xo) ' %9, VzE€Z,

‘where the inner product {:,-> on Z is given by
1

(2.8) <21,22>:=j(21(t), ZZ(t))dt, Vzl,22 EZ.
0

We remark that P is X,-equivariant (since x, has isotropy Z,), and therefore
the subspace Y :=ker P is invariant under the action of X.

Now we can apply Theorem 8.2.5 of [6] to prove that C, has a tubular
neighborhood in X of the form

(29) (v, @) (xo+ Y (v, @I xS, ye@},

where Q is a neighborhood of the origin in X N Y. Therefore we can replace
x by (7, @) (xo+y) in (2.5); using the I' x S'-equivariance of M and project-
ing with P and (I — P) gives the equivalent problem

(2.10) PM(xo+y, 4, 0)=0
(2.11) (I—P)M(xo+y, 4,0) =0



A. VANDERBAUWHEDE 201

Since D, M (xo, Ag, o) = — X%, We can solve (2.10) by the implicit function
theorem for ¢ = 6(y, 4); bringing this solution in (2.11) gives the reduced
equation

2.12) M(y, 3):=(I—P)M(xo+y, A, &(y, 1)) =0.

The mapping M: (YNnX)xR—Y is smooth and ZX,-equivariant, with
M(0, Ap) =0; also Lo:=D,M(0, 1)) e L(X Y, Y)is a Fredholm operatdr
with index zero, and Im L, = (I — P)Im L,; ker L, can be related to ker L, as
follows: if %,¢ImL, then kerL, =(I—P)ker_L~,o; if XoeImL, then there
exists a unique y, €Y N X such that Lyy, = %o, and ker L, = (I — P)ker L,
®span {y,}. Finally, the elements of kerL, can be obtained from the
eigenvectors corresponding to the characteristic multipliers of X, which are
Nth roots of unity.

As a last step before the main bifurcation analysis we can now apply an
equivariant Liapunov-Schmidt reduction to (2.12) (see [6]); the foregoing
shows that all the necessary hypotheses for such reduction are satisfied. As a
result we find a finite-dimensional system of bifurcation equations, with
dimension equal to dimker L,, and equivariant with respect to the action of
Zo on ker L,. This Xj-equivariance reflects the symmetries (both spatial and
orbital) of our original solution: this can be seen from the following lemma
which relates the isotropy X of a solution (x, 4, 6) € X xR? of (2.5) to the
spatial and orbital symmetries of the corresponding solution X(t) : = x(ot) of

(1.1),.
LEMMA 1. Let xeX, ¢ >0, and X(t):= x(ot), VteR.

Let
(2.13) Z:={(y, 9) eI xS'| (3, 9)'x = x},
(2.14) T:={peS'| (Id, p)eZ},
(2.15) H:={yerll (y, p) X for some ¢p€S')},
and
(2.16) K:={yel (y,0eX.

Then either

(i) T=S', H=K, and x is constant,
or

(i) T = Zy for some M =1 and X has minimal period (¢M)~*, spatial
symmetry K and orbital symmetry H; moreover
(2.17) yx(t) = F(t+0(»(@M)1), VteR, VyeH,

where §: H —S! is defined by 0(y) = Mo for all yeH and any ¢ €S* such
that (y, p) €.
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Now the group I' xS! acts on Z by

(23) (7, 9)z():=yz(t—¢), VteR V(y, p)el x5,
and M is equivariant with respect to this action:

24 M(r, 9)'x,4,0)=(, ) M(x, 4, 0), V(y, p)el x5
Therefore the equation >

(2.5) M(x, 1,6)=0

has not only the solution (x,, 44, 6o) €X x R?, but a whole orbit of solutions
given by C, x {49} x {0,}, where Cq := {(y, @) xo| (v, @) €I’ xS} is the orbit
in X generated by the group I"' xS! acting on x,. Our problem reduces then
to that of finding all solutions (x, 4, g) of (2.5) in a neighborhood of C,
x {40} x {60} in X x R?; to each such solution (with ¢ > 0) there corresponds
a 1/o-periodic solution of (1.1);, given by X(¢) := x(ot); if ¢ is near g,, then
the period 1/¢ is near Np,. Moreover we will see later that the symmetry of
X (described by the spatial symmetry K, the orbital symmetry H and the
homomorphism §: H —S!) can be completely determined from the isotropy
subgroup of x, i.e. from

(2.6) Z:={(y, ) el xS (y, ¢)-x = x}.

We will denote the isotropy subgroup of our basic solution x, by Z,.
Because of the condition (c) the tangent space to Co in X is one-dimensional
and spanned by x,: it follows that x, eker L,, where L, := D, M (xo, Ao, 60).
We can define in Z a projection P on this tangent space by

2.7) Pz:= (z, %) (R, Xo) 1 %o, Vz€Z,

where the inner product {:,-) on Z is given by
1

(28) <Zl,22>:= j(z,(t), Zz(t))dt, Vzl922 eZ.
0

We remark that P is X,-equivariant (since x, has isotropy X,), and therefore
the subspace Y :=ker P is invariant under the action of Z,.

Now we can apply Theorem 8.2.5 of [6] to prove that C, has a tubular
neighborhood in X of the form

(2.9) (v, @) (xo+ Y (7, @) eI xS, yeQ)},

where Q is a neighborhood of the origin in X N Y. Therefore we can replace
x by (3, ¢)(xo+y) in (2.5); using the I" xS'-equivariance of M and project-
ing with P and (I — P) gives the equivalent problem

(2.10) PM(xo+y, A, 0)=0
(2.11) (I-P)M(xo+y, A, 06) =0
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Since D, M(xo, A9, 0o) = —X%, We can solve (2.10) by the implicit function
theorem for ¢ = 6(y, 4); bringing this solution in (2.11) gives the reduced
equation

(2.12) M(y, A):=(I—P)M(xo+y, 4, &(y, ) = 0.

The mapping M: (YNnX)xR—Y is smooth and ZX,-equivariant, with
M(0, 2p) =0; also Lo:=D,M(0, 1)) e Z(X NnY,Y) is a Fredholm operator
with index zero, and Im L, = (I — P)Im L,; ker L, can be related to ker L, as
follows: if %o¢ImL, then kerL, = (I — P)ker Ly; if %,eImL, then there
exists a unique yo€Y n X such that L,y, = %,, and ker L, = (I — P)ker L,
@span {y,}. Finally, the elements of ker L, can be obtained from the
eigenvectors corresponding to the characteristic multipliers of X, which are
Nth roots of unity.

As a last step before the main bifurcation analysis we can now apply an
equivariant Liapunov-Schmidt reduction to (2.12) (see [6]); the foregoing
shows that all the necessary hypotheses for such reduction are satisfied. As a
result we find a finite-dimensional system of bifurcation equations, with
dimension equal to dimker L,, and equivariant with respect to the action of
Z, on ker L. This X -equivariance reflects the symmetries (both spatial and
orbital) of our original solution: this can be seen from the following lemma
which relates the isotropy X of a solution (x, 4, ) e X xR? of (2.5) to the
spatial and orbital symmetries of the corresponding solution X(t) : = x(ot) of

(1.1),.
LEMMA 1. Let xeX, 6 >0, and X(t):= x(at), VteR.

Let
(2.13) Z:={(y, @) el x8' (y, 9)'x = x},
(2.14) T:={peS!| (Id, p)eX),
(2.15) H:={yerll (y, ) €Z for some p€S'),
and
(2.16) K:={yel (y, 0)eX).
Then either

(@) T=S', H=K, and x is constant,
or

(i) T = 2Zy for some M =1 and X has minimal period (cM)~!, spatial
symmetry K and orbital symmetry H; moreover

(2.17) yx(t) = X(t+0(»(M)~'), VteR, VyeH,

where 8: H —S! is defined by 8(y) = Mo for all yeH and any ¢ €S such
that (y, ¢)€ZX.
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Proof. Since T is a closed subgroup of S, we have either T=S' or T
= Z,, for some M > 1. In the first case, x is constant and H = K. In the
second case, x has minimal period M~! and hence X has minimal period
(cM)~ 1. Moreover, we have then for each (y, ¢) X and each y €S that (y, ¢
+y)€eX if and only if Yy € T Therefore, if we put

(2.18) 0(y):= {peS'| (v, p) X}
for each yeH, then 0 is a group homomorphism from H into S!/7, and
(2.19) Z=1{(, ¢)l yeH, p€b(y)].

(Remember that the elements of S/T are cosets of the form ¢+ T < S, for
some fixed @ eS') Since T= Z,, it follows that the mapping 6: H —S*
given in the statement is well defined, and a group homomorphism; also
(2.17) follows easily from

(2.20) yx(t) = x(t + @), \%:eR, Y(y, o) eX.

From (2.17) we see that H is contained in the orbital symmetry of X. To
prove equality, suppose that

(2.21) y%(t) = Z(t+y (@M)™1), VieR,
for some (y, ¥) eI’ xS'; then
(2.22) | yx(t) = x(t+YM™Y), VteR,

(» M"'y)€Z, yeH and ¢ = 8(y). Finally, it follows from (2.16) that K
= ker @ = ker 0, and hence K is the spatial symmetry of X.

3. Some elementary bifurcations

The bifurcation equations resulting from a Liapunov-Schmidt reduction of
" (2.12) may take many different forms and show different degrees of complex-
ity, depending on the structure of ker L, and the action of X, on this space.
In order to proceed we make now the following assumption:

(d)(i) the operator L,:= D,M (0, Ao), has zero as a semi-simple eigen-
value, i.e.

(i) the action of X, on U := ker L, is absolutely irreducible; this means
that the only linear operators on U which commute with the X,-action are
the scalar multiples of the identity.

One can argue that the conditions (d) will be satisfied for generic Z,-
equivariant one-parameter problems of the form (2.12) (see [4]). However,
this does not prove that (d) holds for generic I'-equivariant one-parameter
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systems of the form (1.1) although it is plausible that this is actually the case:
a formal proof has only been given for the case of trivial symmetry (see e.g.
[1] or [5]) and for cyclic I" (see [3]).

Under the hypothesis (d) the bifurcation equations take the form

3.2 Gu,A)=0
where G: U xR = U is smooth, with G(0, 4o) =0, D,G(0, 40) =0, and ’
3.3) G((, ), s ) =, ) G(u, 4, V(y, p)€Z,.

To each solution (u, A) near (0, 1) of (3.2) there corresponds a solution
(F(u, 4), 4) of (2.12), and a solution (xo+ J(u, 4), 4, &(¥(u, 4), 4)) of (2.5); this,
in turn, generates a whole family of solutions of (2.5), by the I' x S*-action.
The symmetry of these solutions is determined by the isotropy subgroup

(3.4) Z,:={(y, ©)€Zol (v, @) u=u}.

In particular, all bifurcating solutions will at least have the symmetry given
by

3.5) Z:={y, ) €Zo| (v, 9)'u=u, YueU}.

2 is a normal subgroup of X,, and X,/ acts absolutely irreducibly on U.
One way of classifying the possible bifurcations is according to dim U and
the action of X,/2 on U.

r'here is one consequence of our hypothesis (d) which we should clari-
fy before we start looking at particular cases. If we let T
:= {peS!| (Id, ) €Z,} (compare with Lemma 1) then we know from (2.1)
that T, = Zy. Now T, =~ {Id) x T, commutes with all elements of X,, and
hence our assumption (d)(it) implies that each element of T; acts on U as a
scalar multiple of the identity; in particular, there is some a« €R such that
(Id, 1/N)-u = au for all ueU. Since (Id, 1/N)¥ equals the identity we have
the condition a” = 1; this gives us the following possibilities:

(1) Id, 1/N)-u = u for all ueU; this implies that all bifurcating solu-
tions of (2.5) will have the same minimal period 1/N as x,. It follows that in
the corresponding bifurcation picture for (1.1) all periodic solutions will have
a minimal period near N~ ! 645! = py, and hence these solutions can also be
obtained by taking N =1 in (2.1);

(2) (Id, 1/N)'u = —u for all ueU, and N is even. Then (Id, 2/N)€eZX,
and all bifurcating solutions of (2.5) will have a minimal period 2/N, which is
twice the minimal period of x,. In the corresponding bifurcation picture for
(1.1), all periodic solutions will have a minimal period near 2p,, and hence it
is sufficient to take N =2 in (2.1).

We conclude that under the hypothesis (d) it is sufficient to consider the
cases N =1 and N =2, while in this last case we may also assume that
(Id, 1/2) acts as minus the identity on U.
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The easiest case to discuss is when X2 = X,; the condition (d)(ii) then
implies that dim U = 1, and (3.2) becomes a scalar equation. Assuming that

(3.6) D;G(0, 45 # 0,

we can solve for A =A4*(u), with A*(0)=A4, and DA*(0) =0; if also
DZG(0, Ao) # 0 then D?>A*(0) # 0 and we have an orbit-turn: two periodic
orbits with the same symmetry exist for A <0 (or for 4 > 0), coalesce as 4
goes to zero, and disappear for 4 > 0 (resp. for A < 0). We remark that for
such orbit-turn one will in general have that x,elmL,, i.e. zero will be a
non-semisimple eigenvalue of L,. To see this notice that in case of a turn the
equation (2.5) has a solution branch (x*(u), A*(u), 6*(u)), parametrized
by ueU, and with DA*(0) = 0; differentiating the identity M (x*(u),
A*(u), 6* (u)) = 0 one finds

3.7) Lo Dx* (0) = %o Do* (0);

assuming that Do*(0) # 0 we see that x, eIm L,. The hypothesis (d) is then
equivalent to ker L, = span {x,} and Dx*(0)¢ImL,.

From now on we will assume that 2 is a proper subgroup of X,. The
hypothesis d (i) implies that U is irreducible under the X,-action, 1.e. that U
has no proper subspaces which are invariant under the action of X,. Indeed,
the orthogonal projection on such subspace (using the inner product (2.8))
commutes with the operators from X,, and hence this projection must be
either the identity or the zero operator on U. Now

U™:= uel| (y, @)u=u, Yy, ) €2}

is such a subspace; since U® % U by our assumption that X # X,, we
conclude that

(3.8) U = {0}.
Together with (3.3) this implies that
(39 G0O,4)=0, VA

So (2.5) has a solution curve {(X(), 4, 6(4))} parametrized by 4, passing
through (x,, A, 6o), and with all solutions on the curve having the same
symmetry as x,. Solutions bifurcating from this “trivial branch” correspond
to solutions (u, 4) of (3.2) with u # 0 and hence with a symmetry Z, strictly
contained in X, (by (3.8)).

We consider now in more detail the different possibilities which can
arise when dimU = 1. In that case we necessarily have X,/ =~ Z, and all
bifurcating solutions have the symmetry 2. The equation (3.2) is then a scalar
equation, with

(3.10) G(—u, ) = —G(u, 4).
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Writing G (u, A) = uH (u, A) the nonzero solutions of (3.2) have to satisfy

(3.11) H(u, A) =0.
We have H(0, Ao)) =0 and H(—u, A) = H(u, ). Assuming that
(3.12) D,H(0, 40) =D,D;G(0, o) # 0

we find a unique solution branch {(u, I(u))} for (3.11), with 1(0) = 4, and
A(—u) = A(u), i.e. we have a pitchfork bifurcation for (3.2) whereby the two
nontrivial branches are related to each other by the symmetry operators
from Z,\Z. In order to describe the corresponding bifurcation for (1.1) we
have to see how X can sit into X,; as already mentioned before, we have
only to consider the cases N =1 and N = 2.

If N=1 then we see from Lemma 1 that £, and X~ have the form

(3.13). Zo= {1y, B ) y€H,)
and
(3.14) Z = {8, yeH},

respectively, with H, the orbital symmetry of our original solution X,
8,: H, = S! as in (1.5, and with H a normal subgroup of H, such that
Ho/H = Z,. The spatial symmetry of X, is given by K, = ker §,, while the
bifurcating solutions have orbital symmetry H and spatial symmetry
K:= HNK,. Hence the whole bifurcation takes place in the subspace

(RH¥:= {xeR" yx =x, VyeK]}

on which the group Hy/K acts (remark that K is a normal subgroup of H,).
Restricting equation (1.1) to this subspace we have to replace H,, K, and H
in the foregoing by H,/K, K,/K and H/K, respectively; we will denote these
quotient groups again by H,, K, and H. Thus we may assume that K is
trivial, i.e. H in (3.14) is a normal subgroup of H, such that’

(3.15) Hy/H=Z, and HnNKy,=Hnkerf,='I.

We remind also that H,/K, is isomorphic to im 8, so that Hy/K, = Z,, for
some meN or Hy/K, = S'.

There are now two possibilities, depending on whether K, is trivial or
not. If K, is trivial then Hy, =~ Z,, or Hy, = S'; such H, has a normal
subgroup H with Hy/H =~ Z, only if H, = Z,, with m even, in which case H
=§51(Z,,,,2) = Z,,. Suppose next that K, is nontrivial. Let ¢e€K, and
yeH; since 6H = Ho there exists some y' € H such that oy = y'o. It follows
that 8, (y) = 8,(cy) = 8, (¥ 6) = 8,(¥'); by (3.15) 8, is injective on H, so that
we may conclude that y’ =y and

(3.16) oy=vy6, VoeK, VyeH.
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If o is a nontrivial element of K, then (3.15) also implies that H, = H ucH
and ¢?H = H; hence c?€eH nK, = {I}, ie. ¢ =1. Fixing such o we see
that each nontrivial element of K, has the form oy for some yeH; the
condition oy €K, 1mphes 0=0,(cy) = Bo(y) ie. yeHNK,= {I}. So we
conclude that K, = {I, 6} = Z,. Also im8, = ,(H,) = 0, (H U aH) 6, (H),
so that H is isomorphic to im#8,, ie. H = H,/K,. Finally (3.16) shows that
H, = H xK,; such H, is itself cyclic only if H = Z, with m odd.

Returning to the original setting (with K not necessarily trivial) we can
summarize the case N =1 by saying that we have found two different types
of “orbit-pitchforks”:

(1) one for which there is breaking of orbital symmetry but conservation
of spatial symmetry; this is only possible when H,/K, =~ Z,, with m even,
and then H = 65 '(Z,,2);

(2) one for which both the orbital and the spatial symmetry break; this
is only possible if H, has a normal subgroup H, and K, has a normal
subgroup K, such that H/K = Hy/K,, KoK =Z, and (Hy/K) = (H/K)
x(Ko/K).

We now turn to the case N = 2; it follows from Lemma 1 that X, has
the form

Zo = 1(v, @)l yeH,, (pGOO(y)},

where 6,: H, —S'/Z, is a group homomorphism connected to the homo-
morphism 8,: H, »S' appearing in (1.5) by

1
(3.17) 00()’)=§§o()’)+22—{ 8o (», 90(?)'*‘} VyeH,.

We may assume that (0, 1/2)¢ X, since otherwise the problem can be further
reduced to the case N = 1. Since Xo/2 = Z, it follows that X must have the
form

Z =y, 0() yeH,)

with 6: H, —S' a homomorphism such that 6(y) €6, (y) for each yeH,. We
conclude that the bifurcating solutions will have the same orbital symmetry
as the solutions along the trivial branch. The spatial symmetry of the
bifurcating solutions is given by K :=ker@; K is a normal subgroup of H,,
and since 0(y)€0,(y) we have K, =kerf, = 0~ !(Z,), so that K is also a
normal subgroup of K,. We have K =K, or K,/K = Z, depending on
whether 1/2¢im60 or 1/2eim@. Let us consider these two cases separately.

If K=K, and 1/2¢im6 then we have necessarily im0 = Z,, with m
odd. Putting m = 2/+1 we have then

(3.18) Ho/K0=H0/K Eim6=221+1.
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Moreover ,(y) = 20(y) (mod1) for each yeH,, and hence also im#§,
=27+, =2Zy+y. If yeH, is such that 8,(y) = 1/(21+1) then

1 I+1
B0 ) = §2(21+1)’ 21+1}
and ,

I+1

00) =51

since 0(y)€6y(y) and im0 =2Z,,,,.

If Ko/K =Z, and 1/2eimf then we have either im6 = Z,,, for some
meN or im0 = S*. If Hy/K =im6 = Z,,, then H,/K, = im0, = 2Z,,, = Z,.;
if y€H, is such that 6(y) = 1/2m then 8,(y) = 1/m; this implies that y™ is an
orbital symmetry along the primary branch, but corresponds to a shift over
half a period for the bifurcating (double-period) solutions. If H,/K = im0
= S! then Ho/K, = im8, = 2S* = S!; if yeH, is such that 6(y) = 1/2 then y
is an orbital symmetry along the primary branch, and corresponds to a shift
over half a period for the bifurcating solutions.

To summarize: we have found two types of period doublings:

(3) one for which both the orbital and the spatial symmetry are con-
served; this is only possible when Hy/K, = Z,, with m odd;

(4) one for which the orbital symmetry is conserved but the spatial
symmetry is broken; this case is only possible if K, has a normal subgroup
K such that K,/K = Z,, while K is also normal in H, and H,/K is cyclic.

We finish with some remarks. In [2] and [3] Fiedler studies the cases I
= Z, and I' = §', which implies that all subgroups which appear are cyclic.
" He proved that for one-parameter problems only the orbit turn and the four
bifurcations (1){4) considered above can appear generically. In this termi-
nology case (1) is a flip pitchfork, case (2) a flip-flop pitchfork, case (3) a flip
doubling and case (4) a flop doubling; this terminology did arise from
considerations concerning the Poincaré map attached to the periodic solu-
tion X, (t).

One can also attempt to discuss (under the hypothesis (d)) the cases with
dim U 2> 2; then X,/X is isomorphic to a group acting absolutely irreducibly
on U, and hence cannot be commutative. One can show that for such cases
there will always be a breaking of both the orbital and the spatial symme-
tries. We hope to discuss this in a forthcoming paper.
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