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The translation equation and algebraic objects

by JOzEF TABOR (Krakow)

Introduction. A. Zajtz introduced in the note [7] the notion of the
algebraic object. This notion is very closly related to the translation
equation. The determination of algebraic objects can be reduced to the
determination of solutions of the translation equation on a suitable al-
gebraic structure (on a semigroupoid) satisfying the identity condition.

In this note we are going to give the general solution of the transla-
tion equation in a groupoid; next, the general solution of this equation
with the identity condition.

Some proofs of theorems in this note are similar to proofs of respective
theorems in the note [5]. In this note we regard the translation equation
a little more generally. Some proofs are given for better readibility, al-
though that proofs are similar to the proofs in [5].

Particularly, we are going to show that every solution of the tran-
slation equation in a Brandt groupoid, satisfying the identity condition,
is defined on some Cartesian product. It means that every algebraic
object over a Brandt groupoid is non-singular.

Next, we prove that every solution ¥# of the translation equation
in a groupoid can be extended to a solution F defined on a Cartesian
product in such a manner that if ¥ satisfies the identity condition, then F
satisfies the identity condition. It follows that every algebraic object
over a groupoid can be extended to a mnon-singular algebraic object at
the same fibre. Author does not know if it is possible for a semigroupoid.

Preliminary.

DeFINITION 1 (cf. [6]). A non-empty set C with one binary interior
operation “-” defined for some pairs (a, f)eC x C will be called a mul-
tiplicative system.

DEFINITION 2 (cf. [5]). Two multiplicative systems C,, C, will be
called isomorphic if there exists a one-to-one function f transforming C,
onto C, and satisfying the following condition: the product f(a)-f(p)
is defined if and only if the product a-f is defined, and if it then holds:

flap) = f(a)f(B).
DEerFINITION 3 (cf. [1]). A multiplicative system C will be called
a semigroupoid if therc are satisfied the following axioms:
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(a) If in the equation

a(By) = (af)y

one of its sides or both of the products $y and af are defined, then both
sides of the equation are defined and the cquality holds,

(b) To every element a of C there exists exactly one left unit ¢, and
exactly one right unit 6, such that:

g, a = ad, = a.

(¢) If the product af is defined, then §, = &,.

DEeFINITION 4 (cf. [1], [6]). A semigroupoid will be called a groupoid (!)
if, in addition to axioms (a)-(e¢), also the following condition holds:

(d) To every element a there exists exactly one element a™* (inverse
to a) such that:

aa' =¢,, ala=234,.
DrerINITION 5 (cf. [4], [6]). A groupoid will be called a Brandt
groupoid if the following condition holds:

(e) To cevery two elements a, y there exists such an element § that
both the products af and Sy are defined.

Let A be an arbitrary non-empty set and G an arbitrary group.
In the set A xA xG we define the operation “-” as follows:

The product (a, b, a):(c, d, ) is defined if and only if b = ¢, and
then

(a,b,a)(c,d,p) = (a,d, ap).

It is easy to verify that the set 4 x4 xXG, with such an operation “-”,
is a Brandt groupoid. This groupoid will be called a product groupoid
and it will be also denoted by A x A x@. The term “product groupoid”
was proposed by A. Zajtz.

A. Nijenhuis has proved the theorem which can be formulated in
the following way (cf. [4], p. 11):

THEOREM 1. Every Brandt groupoid is tsomorphic to some product
groupoid. )

We quote two further theorems; the first of them was proved in [6],
the other in [5].

THEOREM 2. A multiplicative system C is a groupoid if and only if
there exists such a decomposition {C;};.; of the set C that every set C; with
the operation “-” is a Brandt groupoid. If C is a groupoid, then such a de-
composition s unique.

() We were using the term “Ehresmann groupoid” instead of the term ,grou-
poid” in note [5].
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ProrosiTION 1. If the product of two elements of a groupoid is defined,
then they belong to the same Brandt groupoid.

We now present the following three definitions given by A. Zajtz
(cf. [7], p. 68, 69, 71).

DEFINITION 6. The pair £ = (X, ), where X is a non-empty set
and G is a semigroupoid, will be called a left algebraic object over G at the
fibre X (or shortly an algebraic object) if the exterior product (a, ) - aX
defined for some pairs (a, #)eG@ x X satisfies the following axioms:

(A) To every element xe¢X there exists an element ae«@ such that
the exterior product ax is defined.

(B) The exterior product is associative in the following sense: if
the products gz and af are defined then both sides of the equality

a(fx) = (af)x
are defined and this equality holds.

(C) Any unit is a nentral operator, i.e. if ax is defined, then ¢, and
0,2 are defined and the following equalities hold:

8 = 0,8 = 2.

DEFINITION 7. The algebraic object will be called non-singular if
the exterior product is defined for all pairs (a, x)eG x X; in the opposite
case it will be called singular.

DEFINITION 8. Let (X, @) be an algebraic object and let X c X.
If a pair (X, G) with the restriction of the exterior product in the set X
to the set X is an algebraic object, then the object (X, G) will be called
a subobject of the object (X, G).

2. The general solution of the tramslation equation in a groupoid
and algebraic objects. We shall denote by (X xG; X) the family of all
functions defined in subsets of the set X xG and having their values
in the set X.

We assume the following.

DEFINITION 9. Let X be an arbitrary set and G an arbitrary mul-
tiplicative system. We shall say that a function Fe(X xG; X) satisties
the translation equation if it satisfies the following condition: If F(z, B)
and of are defined then both sides of the equation

(1) F[F(x,p), a] = F(z, af)
are defined and this equality holds.

The functional equation (1) will be called the translation equation.

DerFiNITION 10. We shall say that a function Fe(X xXG; X) satisfies
the identity condition if there are satisfied the following conditions:
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(a) If F(x, a) is defined and ¢,a = a, then F(z,¢,) is defined and
F(w7 sa) = .

(b) If F(x, a) is defined and ad, = a, then F(z, §,) is defined and
F(m7 60) = Z. .

Let us assume that the multiplicative system G in Definitions 9
and 10 is a semigroupoid.

Let us put:

ar = F(x, a).

It is easy to sec that every non-empty solution of the translation equation
satisfying the identity condition determines some algebraic object and
every algebraic object determines some non-cempty solution of the trans-
lation equation satisfying the identity condition (see conditions (B)
and (C) of Definition 6).

An object determined by a non-empty function Fe(X xG; X) satis-
fying the translation equation and the identity condition is non-singular
if and only if the domain of the function F is a set of the form

X x@ (% = X < X).

Now we shall characterize the structure of the general solution of
the translation equation in a Brandt groupoid. In view of Theorem 1
we may consider product groupoids only. We shall prove the following

THEOREM 3. The general solution of the translation equation in a pro-
duct groupoid A X A X @, for a basic set X, is a family of functions F which
can be obtained in the following manner:

(a) To every aeA we choose arbitrarily a set X, and X, such that
X,c X,= X and the sets X, have the same power (for acA).

(b) To every acA we construct a function f, transforming X, onto X,
such that f,(x) = x for xeX,.

(c) Let a, be any fixed element of the set A. To every aeA we construct
a one-to-one function h, transforming X, onto X ap"

(d) We choose an arbitrary function H defined on Xao <G and satis-
fying the translation equation(®).

(e) We put:

(2) F(w1a7b7a) =h;1H(hbfb(m)7a) fO’I‘ wEXb-.

Proof. At first we shall prove that the function I' defined by con-
struction (a)-(e) satisfies the translation equation. Let us consider two
elements such that their product is defined, i.e. clements of the form:

(a,b,B),(b,c,a)ed xA xXG.

(3) The form of these funetions was given in the notes [2] and [3].
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From the definition of the product groupoid we have evidently:

(a, b, B)(b, ¢, a) = (a, ¢, fa).

Let us, moreover, assume that F(x,b, ¢, a) is defined. From (2)
and from the form of functions k, it follows that F(x, b, ¢, a)e X,. Thus
JfolF(x,b, ¢, a)) is defined. This implies that F[F(z,b, ¢, a),a,b, ] is
defined and

F[F(z,b,¢,q),a,b, ] = h; H{h,f,h H(hf.(2), o, B).
Since h;'H (h.f.(2), a)e X,, Wwe have:

fbthIH(hcfc(w)7 a) = thIH(hcfc(m)y a)-

Hence and from the fact that the function H satisfies the translation
equation we obtain:

F[F(x,b,c,a),a,b,p] = hZIH(H(hcfc(‘v)y a); ﬁ)
= hc:lH(h'cfc(x)y ﬂa) = F(z,a,c, fa).

This completes the first part of the proof of Theorem 3.
Now, let us assume that the function Fe(X x (4 x 4 xG); X) satisfies
the translation equation.
We are going to show that the function I can be obtained by con-
struction (a)-(e).
. We divide the proof into a few parts.
We shall denote by 1 the unity of the group G.

I. Let 2 be a fixed element of the set X. We shall prove that F(z, a,b, a)
is defined if and only if #(z, b, b, 1) is defined. Assume that F(z, b, b, 1)
is defined. Since the product (a, b, a)(b, b, 1) is defined and F satisfies
the translation equation thus, F[F(z,bd,b,1),a, b, a] is defined and
consequently F(z, a, b, a) is defined. Analogously, since the product
(b,a,aY)(a,b,a) is defined thus if F(x,a, b, a) is defined, then
F(x,b,b,1) = F[F(z,a,b,a),b,a,a '] is defined. We define the
function f, by. the following condition:

(3) Jol®) = F(®,a,a,1)

and we define the set X, as the domain of the function f, and X, as the
set of values of this function.
Let f,(z) be defined. Then it follows from (3) that f,f,(x) is defined
and f,f,(®) = f,(x). This proves that X, c X, and f,(z) = z for z¢X,.
IT. Let a, be an arbitrarily fixed element of the set A. Let us con-
sider an arbitrary element ye¢X,. From the definition of the set X, it
follows that there exists an element x¢X such that y = F(x, a, a,l1).
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We put:
(4) h,(y) = F(z, a,, a, 1).

Since F(z, a, a, 1) is defined thus it follows from I that F(z, a,, a, 1)
is defined.
We shall show that the relation y — h,(y) is independent of the
choice of the element z, thus this is a function with the domain X .
Suppose that F(x,,a,a,l) = F(z,,a,a,l1). Since F satisfies the
translation equation and F(zy, ay, @, 1) is defined (see I), we have the
following equalities:

F(mm Ay, @, 1) = F[F(mua a, a, 1)7 Ao, 0, 1]

= F[F(x,, a,a,1), @y, a,1] = F(2,, ay, a, 1).

It proves that the function %, is well defined.

Similary we also obtain: if F(x,, a4, a,1) = F(«,, a,, a,1), then
F(zy, a,a,1) = F(z,, a, a, 1)

It shows that the function hk, is an injection.

We shall prove that the function %, transforms the set X, onto the
set X, . First we show that if ¥ (, a, b, a) is defined, then F(z, a, b, a)¢ X,.
Suppose that F(z,a,b, a) is defined. Then F[F(z,a,bd,a),a,a,l] is
defined and we have:

F(x,a,b,a) = F[F(x,a,b,qa),a,a,l] :fa(F("L" a,b, a))-.
Thus F(x,a,b,a)eX,.
In particular, it shows that the values of the function A, belong

to X,,. Now let us consider an arbitrary element y of the set X, . It has
to have the form:

y = F(zq, a,, a,, 1).

Then F(xz,, a, a,,1) is defined and F(z,, a, a,,1)eX,. It implies that
there exists x,¢X such that

F(“"o’ a, Gy, 1) =fa(m1) = F(mly a, a, 1)-
Since F satisties the translation equation, we have:
F(xy, a9, @y, 1) = F[F(xy, a,a,,1), ay, a,1]
= F[F(xy, aya, 1), a, a,1] = F(z,, a,, a, 1).
In such a manner we have obtained:
ha(F(wI) a, a, 1)) = F(xy, agy a, 1) = F(z,, ay, ay, 1) = ¥.

Thus the function h, transfroms X, onto X, . Since, as we have proved,
h, is a one-to-one function transforming X, onto X%, thus (for every
acA) the sets X, have the same power.
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Now we are going to prove that if F(x, ay, ay, 1) is defined then,
for every aeA, the equality
(3) F(z,a,a,l) =h;1(F(937a0’a071))

holds.
Suppose that F(z, aq, a,, 1) is defined. It follows that F(z, a, ay, 1)

is defined and F(z,a, ay, 1)eX,.
Thus there exists ZeX such that:
(6) F(ﬁaraaaal) = F(z, a, ay,1).
Hence, from the translation equation, we have
(7) F(Z,a4,a,1) = F[F(T,a,a,l),a,a,l]
‘ = F[F(z, a, ay, 1), ay, a,1] = F(z, a,, a,, 1).
We obtain from (4), (6) and (7):

ha(F(xy a, Gy, 1)) = ha(F(E’ a, @, 1)) = F(%, ay, a,1) = F(x, ay, ay, 1).
This equality implies condition (5).
ITI. Now we definc the function H.
We put:
(8) H(z,a) = F(x, ay, ag, a) for weX, , acl.

We shall prove that the function H is defined on the set Xao X @.

Let x be an arbitrary element of the set X, . It follows from the
definition of the set X, that there exists Ze X, such that z = F(Z, a,, a0, 1).
Since F(Z, a,, ay, 1) is defined, thus for every aeG, F(x, a,, ay, a) is
defined (see I), i.e. H(x, a) is defined.

We proved in II that if F(z, a, b, a) is defined, then F(z, a, b, a)e X,,.
It follows that the values of the function H belong to Xao. Since F satisfies
the translation equation, we have for every reX, and cvery aeG:

H(H(wa a), ﬂ) = F[F(z, ay, ay, a), a,, ay, ]
= F(z, a,, ay, fa) = H (2, fa).

It proves that the function H defined by (8) satisfies the translation
equation on the set X, xG.

Remark 1. The function H defined by (8) satisfies the identity
condition, too.

If weX,, i.e. x has a form:

€r o= F(f7 Qs Ao, 1)1
then we get:

H(ac,l) = F(m’aoyam 1) = -F[F(EyaoaamlL LY aml] =F(5aa’o’aoy 1) =x.
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IV. We shall prove that the function F can be written in the form (2).
Assume that F(x, a, b, a) is defined. From the assumption that I satis-
fies the translation equation and from (3), (4), (5) and (8) we obtain:

F(z,a,b,a) = F{F(a7’ @g, b, a), a, a,, 1} = F{F[F(.’L‘, a5, b,1), ay, a4, a],
a, a5, 1} = k3 (F{F|hy(F (%, b, b, 1), ag, ao, a], @y, ag, 1})
= b7 (F{hy(F (@, b, b, 1)}, ag, ao, a}) = b (H (hyf, (), a)).

The definiteness of suitable expressions in the above equalities was proved
in part I and IT of this proof. It completes the proof of Theorem 3.

ProrosiTioN 2. Let us assume that the function Fe(X X B; X), where B
is a Brandt groupoid, satisfies the translation equation and the identity
condition. Let us denote by X the set of elements X such that there
exists an element aeB such that F(x, a) is defined. Then the function F
is defined on the set X x B.

Proof. In virtue of Theorem 1 we may restrict attention to product
groupoids only. 7

Assume that x e X. Thus there exists an element (a,, b, a;)e A X A xX@
such that F(x, a,, by, a,;) is defined.

From part I of the proof of Theorem 3 we obtain: for every aecAd
and for every ac@, F(z, a, b,, a) is defined. From this and from Defini-
tion 10 (condition (a)) it follows that F(x, a, a, 1) is defined. It implies
that, for every (b, a, a)ed XA X@G, F(x, b, a, a) is defined. It completes
the proof.

Remark 2. It is evident that the assumptions of the above pro-
position can be reduced. In the proof of this proposition we have used
condition (a) of Definition 10 only. But Proposition 2 is not true if, instead
of the identity condition, we assume condition (b) of Definition 10 only.

It follows immediately from Proposition 2 the following

COROLLARY 1. FHvery algebraic object over a Brandt groupoid is non-
singular.

Using Proposition 2 we shall prove the following

COROLLARY 2. The function F of the form (2) (where H satisfies the
tdentity condition) satisfies the identity condition if and only if every function
fa 18 the identity function on the set X (X was defined in Proposition 2).

Proof. From (2) it follows that F(x, a, a,1) is defined if and only
if f,(x) is defined. As for every ze¢X, F(z, a,a, 1) is defined (see Pro-
position 2) and H satisfies the identity condition, we have for every xeX:

F(z,a,a,1) = b (Hbfol@), 1) = b Rofol@) = ful().

It implies the assertion.
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Now we shall consider a possibility of a suitable extension of solu-
tions of the translation cquation in a Brandt groupoid.

First we prove the following

ProrosiTION 3. Let Fe(X XB; X), where B is a Brandt groupoid,
satisfy the translation equation. Then F can be extended to a function F:
X XxB - X satisfying the translation equation.

The set X was defined in Proposition 2.

Proof. It suffices to prove the assertion for a product groupoid.
Let the function I satisfy the translation equation. Then F has the form (2).
We shall extend functions f, only. For ¢very acA we define the function f,
as follows:
f.(x) for zeX,,

f(x) = _
Jata) x, for e X\ X,

where x, is an arbitrary fixed element of the set X,. Put:
F(z,a,b,a) = h3'(H(hJ,(2),a) for zeX,(a,b,a)ed x A xG.

The function F has the form (2), thus it satisfies the translation equation
and it is defined on the set X x (4 x4 x@). It is also clear that F is an
extension of the function F.

Now we shall prove the following

PROPOSITION 4. Let B be a Brandt groupoid and let X be an arbitrary
set such that X ¢ X and let Fe(X XBj X) satzsfy the translation equation.
Then F can be extended to a function FeXX*P satisfying the translation
equation in such a manner that if F satisfies the identity condition, then F
satisfies the identity condition.

Proof. From Propositions 2 and 3 it follows that it is possible to

extend the function F to a function Fe XY*B,
Let us put:
F(x,a) for xeX,aeB,

9 F(z,a) =
) @, a) @€ for a;eX\X aeB.

If F satisfies the identity condition, then F satisfies the identity con-

dition. In this case also F satisfies the identity condition. Moreover, #
satisties the translation cquation. It is sufficient to verify that this is

the case for zeX\X. From (9) we obtain for zeX\X:

F[F(z,a), ] = Flz, p] =« = F[x, fal.

It completes the proof.
Now we shall determine the general solution of the t1.1m1ahon equa-
tion in a groupoid. We shall prove the following
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THEOREM 4. The general solution of the translation equation in an
arbitrary groupoid E (for the basic set X) is a family of functions F which
can be obtained in the following manner:

Let

E = U Es’
seS
where every Eg is a Brandt groupoid and E, N E, =0 for s, +# 8, (see
Theorem 2).
(a) For every seS8 we choose an arbitrary function F e(X x Eg; X)
satisfying the translation equation.
(b) We put: F(x,a) = F,(x, a) for acE, and all xe X such that ¥, (x, a)
is defined, i.e. :
F =\ F,.

seN

Proof. From Proposition 1 it follows evidently that the function F,
defined in such a manner, satisfies the translation equation. Conversely,
onc can see that, if F satisfies the translation equation and we put:

F, (zr,a) = F(x,a) for aeE, and all zeX

such that F(x, a) is defined, then the function F, satisfies the transla-
tion equation. This shows that the function # can be obtained by con-
struction (a)-(b).

From Theorem 4 we get immediately the following

COROLLARY 3. The function F salisfying the translation equation in
a groupoid satisfies the identity condition if and only if every function F,
does.

From Theorem 4 and Proposition 4 we obtain immediately also
the following

THEOREM 5. Let E be a groupoid and let X be an arbitrary set such
that X ¢ X and let Fe(X X E; X) satisfy the translation equation. Then F

can be extended to a function FeXXxE satisfying the translation equation
in such a manner that if F satisfies the identity condition, then F satisfies
the identity condition.

The part of Theorem 5 may be also formulated as follows:

THEOREM 6. Every algebraic object over a groupoid can be extended
to a non-singular algebraic object at the same fibre over this groupoid.

Theorem 6 can be also given the following equivalent formulation:

THEOREM 6'. Every algebraic object over a groupoid is a subobject of
some non-singular algebraic object at the same fibre over this groupoid.
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The question whether every algebraic object can be extended to
a non-singular algebraic object (at the same fibre or not) over a semi-
groupoid is open.
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