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Sharp estimation of even coefficients
of bounded symmetric univalent functions

by Z. J. JakuBowski, A. ZIELINSKA and K. Zyskowska (Lodz)

Abstract. The fundamental result of the paper is
THEOREM. Let N be an arbitrary fixed natural even number. Let Sg(M),M > 1, be the

Jamily of functions F(z) = z+ Y, A.rz" holomorphic, univalent, with real coefficients and such

n=2
that Fe Sg(M) implies [F(z)) < M for |z]| < 1. Then there exists a constant My, My > 1,
such that for all M > M, and every function F e Sg(M) the estimation

Anr < Py(M)
is true, where

PoM) = N —1p+! :
N( ) +k;2 |:( )k M*! (k+l)' (ﬂl,-z.,.‘.;,ﬂk)

my gt .. tm =N
l‘u,&N,1= 1,2,....k

m,'mz-...-m,,].

The only functiop for which with a given M, M > My, equality holds in the above
estimation is the Pick Function w = P(z, M), P(0, M) = O, given by the formula
w z

(1—w/M)*  (1-z2)*"

1. Introductjon, Let S be the class of functions

(1) F(z) = z+ 22 A 2"

which are holomorphic and univalent in the disc K = {z: |z| < 1}. We shall

denote by Sg (M), M > 1, the subclass of functions of the family S satisfying
the conditions:

I° |F(z)) € M for zeK,

2 Ay = A, forn=2,3,..
Of course, for every function FeSg(M) and any zeK we have F(z)
= F(2).

It is known (e.g. [5], [8]) that:
) Ay <2(1-M7YH, M > 1, FeSg(M),

() Ay <2Q-10M " '+15M~2=TM~%), M > 11, FeSz(M).
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Equality in estimations (2) and (3) holds only for the Pick function
w = P(z, M) given by the equation

4) w(l—-wM 1) %2 =z(1-2)"2

(P(0,M) =0, P(z, M) e Sg(M)). Moreover, estimation (3) is not true when
M is sufficiently close to unity. This follows from a well-known result
obtained by L. Siewierski ([10]-[12]) and, in some other way, by M. Schiffer
and O. Tammi [9], concerning the class of bounded functions with arbitrary
coefficients, sufficiently close to identity. This result constitutes a solution to
the Charzynski-Tammi hypothesis.

In 1931 J. Dieudonné [1] proved that in the family Sz = Sg(0)
(Sr(M) = Sg, M > 1) the estimation

|Apgel € my, n=2,3,..,

holds, equality taking place only for the function

F(z) = e= +1.

(1—e2)*’

The above ic:ult of Dieudonné as well as estimations (2) and (3)
became a premis: of the following hypothesis: for every N = 2,4,6,...
there exists a coustant My, My > 1, such that for all M > My and every
function F e S; (M) the estimation

%) Aye < P (M)

holds true, where Py (M) is the N-th coefficient in Taylor expansion (1)
of the function P(z, M). This hypothesis, formulated by Z.J. Jakubowski,
was first posed in paper [16].

Note that inequality (5) is not true for any odd N since in the class
Sg(M), M > 1, the sharp estimation ([6], [3], [4], [13])

Ay S 1422—4M '+ M2 fore<M < +©

is known, where A is the greater of the roots of the equation
Alog A = —M™1, As is seen, the function w = P(z, M) is not an extremal
one in this case.

In papers [16], [17] we succeeded in proving estimation (5) for M
sufficiently large when N =6 and N = 8. In the present paper we prove
the validity of the hypothesis for an arbitrary even N. It is worth marking
that the method applied here allowed us to avoid a complicated integration
of the differential-functional equation (cf. e.g. [8]).

2. The equation of extremal functions. Let N be any fixed natural even
number. Consider in the family Sg (M), M > 1, the functional

(6) H(F) = Anf.
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This functional is continuous and class compact, so there exists at least one
function for which functional (6) attains its maximum. Denote by
Fu = Fu(N) the family of all functions extremal with respect to the maxi-
mum of functional (6) in the class Sg(M).

It follows from the main theorem ([2], [8]) that if F(z) = z+ Z A2"
n=2

is an arbitrary function of the family &, then the function

1 ® 1 1
w=f(z)=FF(z)="z=:l anfzn9 alj':V’ a‘nf‘_‘VAnF’
n=2,3,..,
satisfies the differential-functional equation of the form:
r \2
©) (%) Mw) = NE), 0< <1,
where

N
m(W)= Z Dj._l(w]—l"' wjl—l)-w’
=2

N . 1
NE) =) E,_l(z’ 14 e )—29’,

Jj=1
D, = 2a4*Y, j=1,2,..,N~1,
(8) Ej = 2(N‘j)aN_j.f, j = 1, 2,...,N—1,

E, = (N—1)ayf,

0<x<2n

N
# = min [ ¥ D;_, cos(j—1)x],
=2

f"@ =} aP", m=213,..

Inserting (8) into the differential-functional equation (7), and then dividing
both sides by 2, we obtain the equation:

©) (sz>2M(w) =N@, 0<l<l,
where
N 1
Mw) =Y aﬂ,,(w"“'+ _1)—@,
ji=2 W"
(10)

N . 1
N(Z)=(N—l)aNf+Z (N—j+l)a~-1+1_f(zj—l+Zj_l>—@.
=2

3. Auxiliary theorems. Before examining the differential-functional equa-
tion (9) we prove a few lemmas.
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Let us introduce a one-parameter family P = (P(z, M), M e(1, + o)
of functions w = P(z, M), ze K, satisfying equation (4) and the condition
P(O,M)=0,Me(1, +). Each function of the family ¥ can be repre-
sented in tiw form

22+ M(1—-zP2—(1—2)/M[4z+M(1—z)]
M > ,
zeK, Me(l, + ),

where ./M? = M. The branch of the root exists in the disc K because
forall M > 1,4z+M(1-2)*> # 0. It is known that for every M, M e(l, + ),
P(z, M)e Sg(M).

LeEMMA 1. Let P(z, M) be an arbitrary function of the family B, F, —
a Koebe function defined by the formula

(11) P(z, M) =

z - .
-(T_ZT= Zlnz, zeK.

Then, for every M > 1 and every z € K such that |Fy(z)] < M/4, the equality

o 2k 1-3-...-(2k—-1)
_ _ +1 .
13) P, M) =Fole)+ ¥ (=1} phmr ——

holds.

_ Proof. From formulae (11) and (12) we obtain that every function
P(z M)e P can be represented in the form

(12) Fo(z) =

F5(2)

Pz, M) = M[1+%F5‘(z)—%4—1~'5‘(2)\/1+%Fo(z)], zeK,

where \/I = 1. Using the expansion of the function (1 +w)" into a Taylor
series, we hence have for |F,(z)] < M/4,zeK:

M M © 3\ 4%
(14) Pz, M) = M[l +5 RO F'@( ), (k) ng(z))].

Isolating the first three addends of the sum in (14), we ultimately obtain
after reduction and change of the limits of summation

@ % 22k+l
PEM) = Fo@)= ¥ () jr o, 2K IFo(a) < 4M,
which gives formula (13).

Remark 1. It follows from the Weierstrass criterion and the estimation
|Fo(2)l < rf(1—r), |z'| < r, that for every fixed M > 1 there exists an

1
ry€(0, ) (ry = 1+———2 / M +T/ﬁ—) such that series (13) is almost uni-

formly convergent in the disc |z] < ry.
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Now we prove

LEMMA 2. For every number ¢ > 0 and any closed set 4 — K there exists
a constant M,M > 1, such that for all M > M and every function
P(z,M)e B
|P(z, M)—F,(z) <e, zed,

where F, is the Koebe function (12).
Proof. Paying respect to (12) we have, by Lemma 1,
1, 2 Le1 2* 1-3-..-(2k-1)
Pz, M)=Fo @) = 37| ¥, (=D""" 55= D)
zeK,|F,(2) < i M.
Let us take any € > 0 and a closed set 4 ¢ K. Let L, = sup |Fy(z);

zed

obviously L, < +o. Denote by S the sum of the convergent series

* 1-3-...-(2k—1 -
) ( ) Adopt M = max {4L,,2*-S-I’/e}. Then, for M

k=2 _ 2% (k+1)!
> M > 4L,, we have

X 1.3...-(2k=1)

F5(2),

1-3 ...-(2k-1)

F§(2)| < 2413,

M= (k+1)! 2%k +1)!
@ 2k
So, in virtue of the Weierstrass criterion, the series kzz (—1)"“.Mk_ 5 X
1-3-...-(2k—-1 ) . . ~
(k+§)' ) F%(2) is uniformly convergent in 4 when M > M and

the modulus of its sum is not greater than 2*.I%-S. From the above
we have for M > M and ze4:
1
|P(z, M)—F,(2) < 7'24'34'5 <,

which completes the proof of the lemma.
COROLLARY 1. Let P(z, M)e ‘B,

P(z,M)=z+ ) P,(M)z", zeK.
n=2

Then, for every M > 1,

i 2* 1-3-...-(2k—-1)
_ _ +1 .
(15 P,(M) = n+k;2 l:( 1) M1 (k+1)!
X Y ml-mz-...-mk], n=23,..,
(my.mjy,....mp)

myt+tma+t+...tmyg=n
1S$my<nj=1,2,...k
and, in consequence,

(16) Jim P.M)=n, n=23,..
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Proof. By Remark 1 and formula (13) we have for every M > 1

p® o.M F™( @ s 2k
an  pan= ZO0M _FE B
1-3-...-(2k—1
(k+l)(!n! : [Fe@] =0, n=2,3,...

Thus, in order to prove formula (15), it suffices to calculate [F%(z)]™,_,
for any n=2,3,... and any k= 1,2,..., k < n. From the generalized
Leibniz formula we get

n!
[F§@1™ = Y. FoV@)-Fo?@)-...- Fg* (2),
(my.m3....mp) m[!"lz!'...’mk!
m;+tmyt...tmy=n
0s< rnjs nj=1,2,....k

and thus

!
(18) [Fs@".co= X T X

mytmy+...+tmg=n
Ogm"'sll.j= 1,2,....,k

xFe' (@) - Fo? ). Fg¥0), n=0,1,., k=12,

Note that FQ(0) = 0; therefore in the sum on the right-hand side of (18)
all addends with indices (m,, m,, ..., m;) containing at least one zero vanish.
And so, we may assume that 1 < m; < n,j=1,2,...,k. Since [Fo(z)]™),-0
=m-m!,m =1, we have

[F&(2)1™,20 = n! ) m -my-....my, n=12..,k=1,2,..

my+mo+.. . +tmg=n
15m1$u.j=l,2,....&

From that and from (17) we get (15). Note that the convergence (16) could
be obtained immediately from Lemma 2 and the Weierstrass theorem.

LEMMA 3 (cf. [16]). Let N be any fixed natural even number, (M), - , . —
an arbitrary sequence of real numbers, M, > 1, h=1,2,..., such that
lim M, = +00. From each of the families 9"““ = QM"(N), h=12,...,

h— + o
of functions extremal with respect to the maximum of functional (6) in the
respective classes Sg(M,), h = 1,2, ..., let us choose arbitrarily a function

Fy(2) = z+ ) A,,z" and consider the sequence (F,),-, .. .. Then, for every
n=2
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number ¢ > 0 and any closed set A = K, there exists an h, such that for
all h > hy and ze 4:

, |Fy(2)—Fo(2)l < e,

where F, is the Koebe function (12).

The proof is a consequence of the inequality Py(M,) < Ay, < N,
Corollary 1, the fact that F, is the only function in the family Sy for
which Ay = N [1] (N natural even), and of the Vitali-Osgood theorem.

Remark 2. It foliows immediately from the Weierstrass theorem that
for every sequence of extremal functions (F,),-;,, . defined in Lemma 3,
and for any n,n = 2,3,..., lim A, = n.

h—++o

CoROLLARY 2. If, for every M, M e(l, + o), any function F of form (1)
(A,rp = A (M), n = 2,3,...) belongs to the family ¥y, then, for every n,

=2,3,..., and any ¢ > 0, there exists an M, such that for all M > M,
and every function F € 7y

[A,p—n| < e.
The proof follows ‘mmediately from the arbitrariness of choice of the

sequence (My),-,.,... aad of the sequence of extremal functions, correspond-
ing to it, in Lemma 3.

LemmA 4 (cf. [16]). Let (M,),.., ... be an arbitrary sequence of real
numbers, M, > 1, h = 1,2, ..., such that lm M, = +o. From each of the

h— +a
families #y , h = 1,2,..., of functions extremal with respect to the maxi-
mum of functional (6) in the respective classes Sg(M,), h = 1,2,..., let us

a
choose arbitrarily a function F,(z) = z+ Z A, z" and consider the sequence
n=2

(F)n=1.2,., where m is a fixed natural number, m > 2. Then, for every
number ¢ > 0 and any closed set A = K, there exists an h, such that for
all h > hy and ze 4.

|FR(2)-F3 @) < e,

where F, is the Koebe function (12).

The proof is a consequence of the close-to-common boundedness of the
sequence (Fy)y=y,,,.. in the disc K, Lemma 3, and of the Vitali-Osgood
theorem.

Remark 3. Let (F}),-, 5,... be an arbitrary sequence defined in Lemma 4.
Denote

Fr@)= Y AP, h=1,2..,m>2,

FR@) =Y ARz, m>2,
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It follows immediately from the Weierstrass theorem and Lemma 4 that

hlil+n AP = A%, n=m,m+1,..., m> 2.
- a0

COROLLARY 3. Let m, m > 2, be an arbitrary fixed natural number. For
every M e(1, + o) and any function F € F  denote

(199 Fr@ = ) ARz", zeK (AP = AP M), n=m,m+1,..).

Then, for every n,n = m,m+1,..., and every number ¢ > 0, there exists
an M, such that for all M > M, and every function F € ¥ y

|45 — AW < e,
where the numbers AT, n = m,m+1, ..., stand for the coefficients of the
Junction F§ defined in Remark 3.

The proof follows directly from the arbitrariness of choice of the

sequence (M,),-,, . In Lemma 4 and of the sequence of functions
(Fh=1.2...., corresponding to it.

LemmA 5 [16]. Let
1° n be an arbitrary fixed natural number,

2 (Coi, Crus s Caddiett, + ) — @ given family of (n+1) — sequences of
sets of real numbers,

30 (gl = {(CO(t)’ €y (t)y secy C”(t)).' CO(t)e COI! €y (t)E Clu tees cn(t)e Cnl}s te
(1, +00),

& there exists a sequence of numbers (cg, cy, -..,c,) which satisfies the
condition: for every n > O there exists a t, such that for all t > ty, if
(CO(t)o cl (t)’ very cn(t))e(gl’ then 0@?}" |ck(t)_ck| < "y

5 Wo(z) = coz"+c 2" 1+ ... +c,,
W, = {W(z,t): W(z,t) = co(t)z"+c,(6)2" "+ ... +¢,(t)},
te(l, + o).
Then, for an arbitrary number ¢ > 0 and every closed and bounded set 4,

there exists a t' such that for all t > ¢ and every W(z,t)e ¥,

Wz, )-Wo(2)l <e¢
for every ze A.
The proof is immediate.
Remark 4. If assumptions 1°-5° of Lemma 5 are satisfied and
& Wy(2) # 0,
7 W,(z) has a k-tuple zero at a certain point z,,
then it follows from the Hurwitz theorem that there exists a ¢ such that
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for all ¢t > ¢ each of the polynomuials W(z,t)e# , has exactly k zeros in
every sufficiently small neighbourhood of the point z,.

4. Localization of roots of the right-hand side of the differential-
functional equation in the limit case M = + co. In the method of proving
the basic theorem, presented later on, the essential part will be played by
the localization of roots of the right-hand side N(z) of the differential-
functional equation (9) in the limit case M = +co. In order to obtain this
limit form of the function N(z) we shall employ the lemmas proved in
Section 3. And so, let F be an arbitrary function extremal with respect
to the maximum of functional (6) in the family Sgz(M), that is, let
Fe % y. The function w = f(z) = (1/M)F(z) satisfies equation (9), where
M(w) and N(z) are given by formulae (10). Let us recall the notation
(cf. (19), (18))

F"(z) = ) A%z", zeK,m=2]3, ..,

fm@) =Y a2z, zeK,m=2,3,..

From the relationship F(z) = M f(z) it follows at once that
AP =M"-aP, m=23,..,n=mm+l,..

Multiplying both sides of equation (9) by M and taking account of the
above, we obtain that the function w = f(z) satisfies the equation

7 \2
(20) (Z::) Mw) = N@), 0.<g <1,
where
N 5 Yoo [ 1
QI MO0 = B () = MM = 3 5 (),

(22) N(2)= Ne(@)= M-N(z) = (N—1) Aus+

. 1 )
(N—j+l)AN—j+l,F(zJ_'l+ j_l)_Ps
A

™M=z

+

ji=2

0<x<2n

. [” ARy : ]
(23) P=P=M-P=2min | Y ——cos(j—1)x|.
j=2

It follows from Corollary 3 that for every 5, > O there exists a constant

A

every ¢, > O there exists an M’ > M’ such that for all M > M',|P| < ¢, .
In turn, from Corollary 2 it follows that for any 5, > O there exists an
M" such that for every M > M”, 1IPja<xN |A;r—jl < n,. From the above and

M’ such that for all M > M’, max

R < n,, and consequently, for

7 — Annales Pol. Mathematici XL. 2
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Lemma 5 we have that for any &, > 0 and every closed and bounded
set 4 there exists an M" > max {M’, M"} such that for M > M"" and
every ze 4

|2~ Y(N(2)=No @) < &,

where N(z) is given by (22), while N, (z) is the sought — for limit form of
the right-hand side of equation (9) and is given by the formula:

(24) No(Z)=N-1)N+ i (N—j+1)2(zj"+ zjl_l)
j=2

= ZNI_l (22724222373 432223044+ (N-1)22"+
+(N=1DNZ T4 (N=1)22N"2 ¢ . +3%22242%2z+41].
t turns out that the point z = —1 is a double root of function an
I hat the poi 1i doubl f function (24) and
that
(z+1)
(25) No(2) = —ZNTLo(Z).
where

(26) Lo(z) = Z2N=4 4 1. 9,2N-5 4 92,2N-6 1 5 3,2N-T 4
+32228 784 L +(@N-1PN+EN-DINS 4
+ANP L 2+@EN-DIND 2 +EN 1224+
e #3224 423234222341 224 1.

In view of (25), it is evident that the localization of roots of the
function N,(z) reduces to examining the zeros of the polynomial L,(z).
Perhaps it is worth observing that this examination seemed to be rather
complicated. On the one hand, the symmetry of coefficients allows to confine
our considerations to the interior and the boundary of the unit circle; on
the other hand, however, it precludes the use of many general theorems
concerning the localization of roots of polynomials (see e.g. [15]) It suffices
just as much as to compare papers [16], [17]. While for N =6 the
examination of the polynomial L,(z) was almost immediate [16], for N = 8
[17] it required the use of laborious methods which, as it appears, cannot
be applied in the case of an arbitrary even N. The simple proof of the
lemma given below is therefore a consequence of rather long research.

LEMMA 6. Let Ly (z) be the polynomial defined by formula (26), where N
is an arbitrary fixed natural even number. Then

N/2-1 1 1
Lo(z) = l—[ (z—z,,)(z—i,,)(z——)( —_—).
k=1 %k Zx

where |z, < 1,2z, #z,, =1,2,..,3N—1.
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Proof. As observed L,(z) is a symmetric polynomial with real coef-
ficients, and so, if L,(zo) = 0, then also Ly(z,) = 0, Ly(1/zy) = 0 and
Lo(1/zp) = 0.

We shall show that L,(z) has no roots on the circle |z] = 1. For the
purpose, let us construct a function

1 2
L@ =2 L)

i, 1 _ 1 1 1
= (z” ‘+F)+( 3 z,,_,)+ +(z’+?—)+(z+7)—N.

Since, by (26), z=1 is not a root of the polynomial L,(z), its zeros
coincide with those of the function L, (z), different from unity. Let us
examine the function L, (z) on the circle |z] = 1. For z = ¢, 0 < x < 2m,
we have

L,(e®) = 2[cos (N—1)x+cos (N—3)x+ ... +cos 3x+cos x—N/2].
Of course, L,(e*) = 0 if and only if
(27) cos(N—1)x+cos(N—=3)x+ ... +cos 3x+cos x = N/2.

The left-hand side of equation (27) has N/2 addends, each of them being
not greater than unity. Thus, the equation is satisfied if and only if

cos(N—1)x =cos(N—-3)x=...=cos3x =cosx =0,

that is, if x = 0. So, the only root of the function L,(z) on the circlg
|z] = 1 is the point z = 1, and consequently, the polynomial L,(z) has no
zeros on this circle.

Examining in the same way the function L,(z) for z=7r, -1 <r <1,
we prove that the polynomial L,(z) has no real roots, either, which
concludes the proof of the lemma.

Remark 5. It follows from Lemma 6 and formula (25) that N,(z) has
only one double root on the circle |z] = 1. This fact is of essential importance
in further considerations.

5. The basic theorem.

THEOREM. Let N be an arbitrary fixed natural even number. Let Sp(M),
M > 1, be the family of functions F(z) = z+ Z A.rz" holomorphic, uni-

valent, wuh real coefficients, and such that F € SR (M) implies |F(z) <
for ze K. Then there exists a constant My, My > 1, such that for all
M > My and every function F € Sg(M) the estimation

(28) Anr < Py(M)
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is true, where

d 2 1.3....-2k—-1
Py(M)=N+ ) |:(‘1)"+1
k=2

MF1 (k+1)!

x Y ml-mz-...-m,,:l.

my+tmy+...+my=N
lsmjsN.j=l.2 ..... k

The only function for which with a given M, M > My, equality holds
in estimation (28) is the Pick function w = P(z, M), P(0, M) = 0, given by
the equation

w 4

(1—-w/M)? ~— (1-zp*°

Proof. Let Fe %y, w = f(z) = (1/M)F (z). The function w = f (z) sat-
isfies the differential-functional equation (20), where M (w), N(z) and P are
given by formulae (21), (22) and (23), respectively. In Section 4 we have
proved that for any ¢ > 0 there exists an M’ such that for M > M"
and for every ze 4

|21 (N(2)=No(@))| < e,

where N, (z) is given by formula (24). From (25) and Lemma 6 (Remark 5)
we infer that the function N,(z) has on the circle |z] = 1 exactly one
double root z = —1, and N—2 complex roots z,,2, k=1,...,3N—1,
inside the circle. Let us surround all zeros of the function Ny(z) by
sufficiently small disjoint discs. It follows from Remark 4 that there exists
an My > M" such that for all M > M, the zeros of the function N(2)
lie respectively in the selected neighbourhoods of the zeros of the function
No(2), in each of these neighbourhoods the number of zeros of both the
functions (considering multiplicity) being the same. From this and from
the properties of the function N(z) [2] it follows, in turn, that this
function has for M > M, the same factorization as the function N,(z), ie.

- 1 ~/2)-1 ~ 1 i
(29) N@)= i z+1? ] (z—Zk)(z—Zk)(z—E—> (z——§—>,
k=1 k k

where |Z,] < 1,%, # Z,, k= 1,2,..,4N—1.
In virtue of equation (20), the images w, = f(Z,) of the points Z,,
k=1,2,...,3 N—1, are the roots of the function M (w) defined by formula

(21), whereas from the very form of the function M (w) it follows that also

. = 1 1 ) ..
the points w,, —,—, k =1,2,...,4 N—1, are its roots. Moreover, it is
Wy Wy
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known [2] that M (w) has on the circle |w| = 1 at least one double root
wo, Which, on account of the above, gives for M > My:

- 1 Wwiz)=1 = 1 1
(30) M) = —g= w—Wf [] (w—wk)(w*wh)(w-f)(w—T),
w k=1 Wi Wy
where |W,| < 1,W, # W,, k =1,2,...,4N—1, and- w, = +1.

It is known ([8], cf. [2], [7], [14]) that every function f (z) = (1/M)F(z),
Fe#y, maps the disc |z] < 1 onto the disc |w] < 1 with cuts along
a finite number of analytic arcs.

Making use of equation (20) and distributions (29) and (30), we prove,
on the basis 'of the properties of the classes Sz (M) considered (cf. [16]),
that, for M > M,, the image of the disc |z| < 1 under the mapping
w=f(z) = (I/M)F(z), Fe %y, is the disc |w| < 1 with one cut along an
analytic arc, with the initial point at w, = —1. From the symmetry of
functions of the classes Sg (M) it follows that this arc is symmetric with
respect to the real axis. Also, making use of the definition of an ordinary
arc as a homeomorphic image of the segment (0, 1), we prove conversely
that this arc lies entirely on the real axis. Hence, and from the fact
that f(0) = 0, it follows immediately that the above arc is a segment of the
negative real half-axis, with the terminal points W, = —1 and w, = wy, < O.

It follows from Schwarz’s lemma that the only function having such
an image, satisfying the condition that for a fixed M, M > My, the
function M- f(z) belongs to the class Sz (M), is the function p,(2)
= (1/M)P(z, M), where P(z, M) is the Pick function given by equation (4),
with P(0, M) = 0. From Corollary 1 we obtain estimation (28), which
completes the proof of the theorem.

It is evident that if Fe Sg(M), M > 1, then the function G defined
by the formula G(z) = —F(—z), ze€ K, also belongs to Sg(M). Thus our
theorem implies:

CoROLLARY 4. Let N be an arbitrary fixed natural even number. For
all M > My and any function F € Sg (M) the estimation

Ane =2 — Py (M)
takes place, where Py(M) is given by formula (15). The only function for
which equality holds is the function P(z) = —P(—z, M).
The question of determining a minimal M, such that for all M > M,
the Pick function is an extremal function remains open.
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