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The evaluation subgroups of homotopy groups were introduced and
studied by Gottlieb [4]-[7]. In the case of CW-complexes the evaluation
subgroups are homotopy invariants and for them there exist several inter-
esting geometric applications (see [1] and [4]-[6]).

In this note we consider a class of pointed topological spaces, later
referred to as D-spaces, including the pointed topological spaces which have
the homotopy type of a pointed CW-complex, and we define their evaluation
pro-groups and shape evaluation groups. These pro-groups and groups are
shape invariants. As an application we study the existence of an &-cross-
section for an approximate fibration over the n-sphere.

1. Inverse D-systems and D-objects. The notions and results on inverse
systems and on the shape theory used by us are taken from the book of
Mardesi¢ and Segal [9].

Let & be an arbitrary category and let X = (X,, p,,, 4) be an inverse
system in 2.

1.1. DeriniTION. We say that the inverse system X is a D-system if all
bounding morphisms p,;. are domination morphisms, i.e., for each 4, A'eA
with 4 < A’ there exists a morphism

Phv: X; =X,
such that p;, pli = 1x,.

1.2. ExampLe. The sequence G =(G,, G,.+1), With G, =2Z, G,,
=G,®Z and p,,,; being the first projection, is a D-system of groups.

13. ProrosiTiON. Let X be a D-system in a category P. Then X is
movable. If 2 is a subcategory of the category Ens,, then X has also the
Mittag-Leffler property.

Let 7 be an arbitrary category and let 22 = J be a dense subcategory
([9], p. 25). Denote by Sh,, , the shape category for (7, #).

1.4. DerINITION. An object X €Sh,; ,, is called a D-object if it admits a
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#-expansion
p: X =X = (X3, par> A)
such that X is a D-system.

1.5. THEOREM. The D-object property is a shape invariant.

Proof. Let X €Sh ; , be a D-object with a .#-expansion p: X =X
which is a D-system. If sh(Y) = sh(X), there exists a .#-expansion q: Y = X
(see [10]), and this proves that Y is a D-object.

Generally, the isomorphisms in the category pro-.# do not preserve the
D-property of inverse systems.

2. D-spaces. Let HTop, be the pointed homotopy category of pointed
topological spaces and let HPol, be the pointed homotopy full subcategory
of polyhedra. The subcategory HPol, is dense in the category HTop,, and
the shape category for (HTop,, HPol,) is denoted by Sh,.

2.1. DerFiniTiON. We say that a pointed topological space (X, %) is a D-
space if it is a D-object in the category Sh,.
Obviously, every object of HPol, is a D-space.

2.2. ExampLes. (i) Let (2, ) be the pointed Warsaw circle. This is the
limit of an inverse sequence

(X9 *) = ((Xm *)a Prn+ l)

with X, = S! and each p,,+: (X,41, *) =(X,, *) being an H-map of degree
one. For each m > n, p,, is a homotopy equivalence. Therefore (X, *) is a D-
space.

(i) Let (H, =) be the Hawaiian earring. This is the inverse limit of an
inverse sequence

(S, #)2(S' v SL B S VSt v S, e ...
for which the inclusion map

Prii: (ST vS'v...vS, ) >(STvStv...v S ¥

g

v
n n+1

satisfies p,,+, p%+1 = 1. Thus (H, %) is a D-space.

(iii) Let (X, *) =((X,, %), P.n+1) be an arbitrary inverse sequence in
Top, . If X, are polyhedra, then the Overton—Segal star construction (X*, )
(see [11]) is a D-space.

Using Proposition 1.3 we obtain

2.3. ProprosITION. Every D-space (X, +) is a pointed movable space..

The next result is obtained from Theorem 1.5.
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2.4. THEOREM. The property of a pointed topological space to be a D-
space is shape invariant.

25. ExampLE. Every stable pointed space is a D-space. The converse is
false: for example, the pointed Hawaiian earring is a D-space but it is not
stable (see [9], p. 1895).

3. Evaluation pro-groups and shape evaluation groups. For a pointed
topological space (X, *) denote by G,(X, *) the n-th evaluation subgroup of
n,(X, *). Recall from [7] the definition of G,(X, *).

Let S" be the n-sphere. Consider the continuous maps F: X x§" = X
such that F(x, so) = x, where x € X and s, is the base point of S". Then the
map f: (5", so) = (X, ») defined by f(s) = F(x, s) represents an element «
=[f]emn,(X, *). The set of all elements « €n,(X, *) obtained in this manner
from some F determines the subgroup G,(X, *).

Not all results about homotopy groups are preserved for the evaluation
subgroups. For example, it is not true that f: (X, ) —(Y, %) induces a map
from G,(X, *) to G,(Y, *) (see [4] and [5]). However, if f is a homotopy
domination, it is true that

f*: n”(X, *) —’7!,,(Y, *)
carries G,(X, *) into G,(Y, ) (see [7]). Then, in [7] it was shown that if X

and Y are both of the homotopy type of a CW-complex and if fis a
homotopy equivalence, then f carries G,(X, *) isomorphically onto G,(Y, *).

3.1. THEOREM. Let (X, %) be a D-space and let
p: (X, %) =(X, *) = (X1, *), pazs A)
be an HPol,-expansion with (X, *) a D-system. Consider the homomorphism
(Pan)e: Tu(Xa, %) 21 (X, %) for n>1 and A< A
Then the following pro-group is well defined:
pro-G,(X, #) = (G,(Xy1, %), (P11)x> 1)

and it is a subobject of pro-n,(X, x). This pro-group depends on (X, *) up to a
natural isomorphism of pro-groups.
Proof. For 4 <1’ the bonding map

Daar: (XA’9 *) —)(Xla *)
is a homotopy domination. By [7] it is induced by the homomorphism
(P22)e: Gn(Xy:5 ¥) =G, (X3, ).
Clearly, (G,(X;, %), (P12)4. A4) is a pro-group.
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If we consider the inclusions
i;: Go(X,, ¥) »n,(X,, ») for every A€A,
then i = (i;) is a monomorphism of pro-groups.

Now, if g: (X, %) =(Y, ) =((Y,, ¥, g, M) is another HPol,-expansion
of (X, %), with (Y, ) a D-system, then there exists a unique isomorphism
Jj: (X, #») =(Y, ») in the category pro-HPol, such that jp = q. Then j induces
an isomorphism of pro-groups

j* U).u): (Gn(X).’ *)! (pll')*; A) —’(Gn(Yua *)’ (qllll')*a M)

Therefore, one can assign to the D-space (X, ») the equivalence class of pro-
groups which contains (G,(X;, %), (Pi1-)s> 4). Denote this class by pro-
G,(X, *).

3.2. DeriniTION. The pro-group pro-G, (X, *) is called the n-th evaluation
pro-group of the D-space (X, *).

The limit G, (X, *) = lim pro-G,(X, #) is called the n-th shape evaluation
group of the D-space (X, *).

The monomorphism of pro-groups

i: pro-G,(X, *) = pro-n,(X, %

induces a monomorphism of groups i: G,(X, *) =%, (X, *).

Clearly, G,(X, *) is defined up to a natural isomorphism of groups.

If (X, *)eHPol,, then pro-G,(X, %) is a rudimentary pro-group and
G.(X, ») = G,(X, *). But, generally, this equality is false since just #,(X, *)
differs from =,(X, *).

3.3. THEOREM. Let (X, *) and (Y, *) be two D-spaces. If F: (X, *) —(Y, ¥)
is a pointed shape domination, then F induces a natural homomorphism of pro-
groups

' pro-G, (F): pro-G,(X, *) = pro-G,(Y, %)
and a natural homomorphism of groups
G.(F): G, (X, » =G,(Y, *).
Proof. Let G: (Y, *) =(X, ) be a right shape inverse of F and let
p: (X, %) = (X, ) = (X3, %), parrs 1),  q: (Y, %) =(Y, ) =((Y,, %), g, M)

be HPol,-expansions such that (X, *) and (Y, ») are D-systems.
Consider

F = (f:,, (P) (x, ‘) _"(Y9 *), G= (g).’ d’) (Ya ‘) _'(X’ ‘)’

two morphisms in pro-HPol, defining the morphisms F and G, respectively,
i, gF = Fp and pG = Gq. The relation FG = 1y implies that each ueM
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admits ;'eM, ' = yo(u), ' = u such that

Ju9otw Wown = Qup-
Consequently, since gq,,- has a right homotopy inverse gj,, we obtain

f:; [g¢(u) Do’ q:u’] =1y,

u

which shows that f, is a homotopy domination. Then, by [7], Propositions
1-4, we deduce that the homomorphism

(s Ta(Xpg, ¥ 2 7a(Y,, #)
carries G,(X,(,), *) into G,(Y,, ). Thus, we obtain a homomorphism of pro-
groups
pro-G,(F) = ((f)x> @): pro-G,(X, *) = pro-G,(Y, *).
The homomorphism G,(F) is the inverse limit lim pro-G, (F).

3.4. CoroLLARY. If (X, *) and (Y, x) are D-spaces and F: (X, *) = (Y, *)
‘is a pointed shape equivalence, then

pl'O-G,, (F) pl’O'G,,(X, *) - pI'O-G,, ( Y, *)a Gn (F) Gn(X’ *) - Gn(Ys *)
are isomorphisms.

35. THEOREM. Let F: (X, ») —=(Y, *) be a pointed shape morphism be-
tween two D-spaces such that F has a left shape inverse

F': (Y, x) =(X, %)
and consider the homomorphism
T, (F): 7, (X, %) 27, (Y, #).
Then #,(F)(a) €G,(Y, %) implies a €G,(X, *).

Proof. With the same notation as in Theorem 3.3, each A admits 1’ €4,
A= @P(d), A = A, such that

gda fw(z) Pow(yar = Paa’-

Since (X, ) 1s a D-system, g; is a homotopy domination. Using [7],
Propositions 1-4, we obtain a homomorphism of groups

G,(F') = lim pro-G,(F') = #,(F')/G,(Y, *): G,(Y, ¥) > G,(X, #).
If #,(F)(x) = BeG,(Y, ), we can write
o« = &, (F' F)(2) = %,(F) %, (F) (@) = G,(F) (P €G,(X, %)
for B =#,(F)(«).
3.6. THEOREM. Let (X, *) be a D-space and let
p=(p): (X, ) (X, ») = ((Xls *), Pu",A)

4 — Colloquium Mathematicum 57,1
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be an HTop,-expansion such that for every A the H-map
pi: (X, *) =(X;, »)
is a homotopy domination and (X, *) is a D-space. Then there exist an inverse
system of groups
G, (X, ¥) = (G,(X;, %), Gp(pir), A)
and a natural isomorphism
G, (X, *» =1limG,(X, *).

Proof. Under the imposed conditions there exist evaluation shape
groups G,(X, %), G,(X,, *), A€eA, and homomorphisms

Gn(pl): G,,(X, *) —*Gn(xla *)-

Moreover, by the relation p,;. p, = p;, A < A/, and since p, is a homotopy
domination, it follows that so is also p;;.. In this way we obtain an inverse
system of groups

Gn(xa *) = (G,,(Xl, *), Gn(p).).’)’ A)
and a homomorphism of pro-groups
G, (p) = (Gu(p): GulX, %) = Gu(X, #).
Therefore, a homomorphism of groups is defined:
imG,(p): G,(X, ») =limG,(X, *);

namely,
lim G, (p) = lim %, (p2)/Gy (X, #).
i

It follows ([9], Theorem 7, p. 130) that limG,(p) is a monomorphism.

Now, let g =(q,): (X, %) —=(Y, ») =((Y,, %), g,,» M) be an HPol,-
expansion with (Y, #) a D-system in HPol, . There exist ([9], I, Section 4.1)
two morphisms

fr(X.#)—>(Y.») and g (Y,» —>(X,»

in pro-HTop, such that fg =1y and g induces lim G, (p;). Applying the fact
that lim#,(p;) is an epimorphism ([9], Theorem 7, p. 130) and using

Theorem 3.5 we see that limG,(p;) is also an epimorphism.

3.7. CoroLLARY. If (X, #) is a D-space for which there exists an HPol,-
expansion p: (X, x) =(X, ») with (X, %) a D-sequence ((X,, *), Pun+1) in
HPol,, then G,(X, *) = 0 iff pro-G,(X, *) =0 in pro-Grp.

38. ExampLEs. (i) Let (Z, ) be the pointed Warsaw circle. Then
pro-G,(X, ) = G,(S', ¥ =0, n>2,
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and
prO-Gl (2, *) = Gl (Sl) = Z

(see [5], Theorem 5.4).
(ii) Let (H, *) be the pointed Hawaiian earring. Clearly,

pro-G,(H. ¥) =0 for n>2.
For n =1 we have (see [7], Corollary 2.4)

Gl (Xma *) EZ(ﬂ'l (Xm’ *)),
the center of
T Xy, *)=2Z*..xZ.
e

Thus, G,(X,,*)=Z and G,(X,,, »» =0 if m = 2. In conclusion, for n > 1,
G,(H, ») =0. '

4. e-cross-sections for approximate fibrations.

4.1. The approximate fibrations were introduced and studied by Coram
and Duvall ({2], [3]) by considering the following approximate homotopy
lifting property (AHLP). A map p: E — B between compact metric ANR’s
has AHLP with respect to a space X provided that for every ¢ > 0 and for
each map h: X —E and each homotopy H: X xI — B. with ph = H,,. there
exists a homotopy H: X xI —E satisfying H,= h and d(pH, H) <e. For an
approximate fibration p: E =B we obtain an exact sequence of groups:

% (F, %) S (E, ¥ Sm(B, % S, (F, % —...,

where F = p~!(x) is the fiber over the base point and i: (F, ¥) =(E, #) is the
inclusion map.

4.2. THEOREM. Let p: E —S" be an approximate fibration, n = 2. If the
fiber (F, *) is a D-space, then d(mn,(S", %)) < G,_,(F, %).

Proof. This theorem is a generalization of Gottlieb’s theorem ([7],
Theorem 2.6) for Hurewicz fibrations, whose proof is based on the Stasheff’s
classification theorem [13] (see also [6]). Unfortunately, a similar classifica-
tion theorem for approximate fibrations is not known. However, we can
prove our theorem using the s-fibrations [8].

Recall that an s-fibration is a morphism

P= (P;_): E= (E,, qars A) —»B

in pro-Top, where A is a cofinite and directed set, B is an ANR and satisfies
the following form of HLP. Given A€A there exists A’ > A such that,
whenever X is a topological space and g: X - E; and H: X xI =B are
maps with p,g = H,, there exists G: X xI = E,. so that p,,G=H and
4,2 Go =¢. If x€B, the fiber of p at x is the inverse system
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F=p ' () =(p""(x), ga/P™ " (0, A4).
To the given approximate fibration p: ‘E —S" one can associate ([8],
Theorem 3.1) an s-fibration
p=(p): E=(E, gij» N) = 8"

Coram and Duvall established [2] that the fibers of an approximate
fibration are FANR's. Then, since (F, %) is a D-space, we can suppose that all
pointed fibers (p; '(*), *) are D-spaces. Now, to the s-fibration p there
corresponds ([8], Theorem 11.1) a bundle equivalence

f: FxS"™! >Fx§"1

such that f/F xso = 1, By composing with the first projection and using
Theorem 3.6, we obtain an element [pr, o f]€G,_;(F, +). We shall prove
that

[pryof] =d([15].

In fact, using the covering homotopy theorem ([8], Theorem 5.3) we
obtain an element uef,(E, F, ) for which p, (u) = [1;,], where p, is the
isomorphism

Px: Tn(E, F, %) =7, (S", *).

Then d([1g,]) = d(p,(w) and by [2], Corollary 3.5, we get the equality
d([15)) = 0py " pu(¥) = 6 (w),

where 6: #,(E, F, *) > %,_,(F, ») is the usual boundary homomorphism.
But 6(u) = [pr, 0 f], so that we obtain [pr, o f] = d([1,]), which implies
the inclusion

d(n,(S", #) = G,_ (F, *).

4.3. We recall from [12] that an e-cross-section (for ¢ > 0) of an approxi-
mate fibration p: E - B is a map s: B —E such that d(ps, 15) <e¢. If p has
an e-cross-section for each ¢ > 0, we say that p has approximate cross-sections.

4.4. CorOLLARY. Let p: E —S" be an approximate fibration. If the fiber
(F, *) is a D-space such that G,_,(F, *) =0, then p has approximate cross-
sections.

Proof. Using the exact sequence of p and Theorem 4.2, we obtain

Imd =G,_, (F, ) =0,

which impﬁes Kerd = n,(S", ), and therefore p,: =n,(E, *¥) = =,(S", %) is sur-
jective. There exist

s (8" %) »(E,+) and H: (S"xI, x xI) =(S", %)
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such that H: ps’ ~ 1. Then for every ¢ > O there exists H: $" xI — E with
H, =5 and d(pH, H) <. Consider s: S" —»E defined by s = H,. Then

d(ps(x), x) = d(pﬁ(x, 1), H(x, 1)) <¢ for every xeS"
Therefore d(ps, 15,) <é&. Thus s is an e-cross-section.

45. ExampLE. Let (H, *) be the pointed Hawaiian earring and let p: E
— S" be an approximate fibration with the fiber (H, *). Then, for n > 2, p has
approximate cross-sections.
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