SHAPE EVALUATION GROUPS

BY

I. POP (IASI)

The evaluation subgroups of homotopy groups were introduced and studied by Gottlieb [4]-[7]. In the case of CW-complexes the evaluation subgroups are homotopy invariants and for them there exist several interesting geometric applications (see [1] and [4]-[6]).

In this note we consider a class of pointed topological spaces, later referred to as D-spaces, including the pointed topological spaces which have the homotopy type of a pointed CW-complex, and we define their evaluation pro-groups and shape evaluation groups. These pro-groups and groups are shape invariants. As an application we study the existence of an ε -cross-section for an approximate fibration over the n-sphere.

1. Inverse *D*-systems and *D*-objects. The notions and results on inverse systems and on the shape theory used by us are taken from the book of Mardešić and Segal [9].

Let \mathscr{P} be an arbitrary category and let $X = (X_{\lambda}, p_{\lambda\lambda'}, \Lambda)$ be an inverse system in \mathscr{P} .

1.1. DEFINITION. We say that the inverse system X is a D-system if all bounding morphisms $p_{\lambda\lambda'}$ are domination morphisms, i.e., for each λ , $\lambda' \in \Lambda$ with $\lambda \leq \lambda'$ there exists a morphism

$$p_{\lambda\lambda'}^*\colon X_\lambda\to X_{\lambda'}$$

such that $p_{\lambda\lambda'}p_{\lambda\lambda'}^*=1_{X_{\lambda}}$.

- 1.2. Example. The sequence $G = (G_n, G_{nn+1})$, with $G_1 = Z$, $G_{n+1} = G_n \oplus Z$ and p_{nn+1} being the first projection, is a D-system of groups.
- 1.3. Proposition. Let X be a D-system in a category \mathcal{P} . Then X is movable. If \mathcal{P} is a subcategory of the category Ens_* , then X has also the Mittag-Leffler property.

Let \mathcal{F} be an arbitrary category and let $\mathscr{P} \subseteq \mathcal{F}$ be a dense subcategory ([9], p. 25). Denote by $Sh_{(\mathcal{F},\mathcal{P})}$ the shape category for $(\mathcal{F},\mathcal{P})$.

1.4. DEFINITION. An object $X \in Sh_{(\mathcal{F},\mathcal{P})}$ is called a *D-object* if it admits a

P-expansion

$$p: X \to X = (X_{\lambda}, p_{\lambda \lambda'}, \Lambda)$$

such that X is a D-system.

1.5. THEOREM. The D-object property is a shape invariant.

Proof. Let $X \in Sh_{(\mathcal{F}, \mathscr{P})}$ be a *D*-object with a \mathscr{P} -expansion $p: X \to X$ which is a *D*-system. If sh(Y) = sh(X), there exists a \mathscr{P} -expansion $q: Y \to X$ (see [10]), and this proves that Y is a *D*-object.

Generally, the isomorphisms in the category pro- \mathcal{P} do not preserve the D-property of inverse systems.

- 2. D-spaces. Let HTop_{*} be the pointed homotopy category of pointed topological spaces and let HPol_{*} be the pointed homotopy full subcategory of polyhedra. The subcategory HPol_{*} is dense in the category HTop_{*}, and the shape category for (HTop_{*}, HPol_{*}) is denoted by Sh_{*}.
- **2.1.** DEFINITION. We say that a pointed topological space (X, *) is a *D*-space if it is a *D*-object in the category Sh_* .

Obviously, every object of HPol, is a D-space.

2.2. Examples. (i) Let $(\Sigma, *)$ be the pointed Warsaw circle. This is the limit of an inverse sequence

$$(X, *) = ((X_n, *), p_{nn+1})$$

with $X_n = S^1$ and each p_{nn+1} : $(X_{n+1}, *) \xrightarrow{\cdot} (X_n, *)$ being an *H*-map of degree one. For each $m \ge n$, p_{mn} is a homotopy equivalence. Therefore $(\Sigma, *)$ is a *D*-space.

(ii) Let (H, *) be the Hawaiian earring. This is the inverse limit of an inverse sequence

$$(S^1, *) \stackrel{p_{12}}{\leftarrow} (S^1 \vee S^1, *) \stackrel{p_{23}}{\leftarrow} (S^1 \vee S^1 \vee S^1, *) \leftarrow \dots$$

for which the inclusion map

$$p_{nn+1}^*: \underbrace{(S^1 \vee S^1 \vee \ldots \vee S^1, *)}_{n} \to \underbrace{(S^1 \vee S^1 \vee \ldots \vee S^1, *)}_{n+1}$$

satisfies $p_{nn+1} p_{nn+1}^* = 1$. Thus (H, *) is a D-space.

(iii) Let $(X, *) = ((X_n, *), p_{nn+1})$ be an arbitrary inverse sequence in Top_* . If X_n are polyhedra, then the Overton-Segal star construction $(X^*, *)$ (see [11]) is a D-space.

Using Proposition 1.3 we obtain

2.3. Proposition. Every D-space (X, *) is a pointed movable space.

The next result is obtained from Theorem 1.5.

- **2.4.** Theorem. The property of a pointed topological space to be a D-space is shape invariant.
- 2.5. EXAMPLE. Every stable pointed space is a *D*-space. The converse is false: for example, the pointed Hawaiian earring is a *D*-space but it is not stable (see [9], p. 185).
- 3. Evaluation pro-groups and shape evaluation groups. For a pointed topological space (X, *) denote by $G_n(X, *)$ the *n*-th evaluation subgroup of $\pi_n(X, *)$. Recall from [7] the definition of $G_n(X, *)$.

Let S^n be the *n*-sphere. Consider the continuous maps $F: X \times S^n \to X$ such that $F(x, s_0) = x$, where $x \in X$ and s_0 is the base point of S^n . Then the map $f: (S^n, s_0) \to (X, *)$ defined by f(s) = F(*, s) represents an element $\alpha = [f] \in \pi_n(X, *)$. The set of all elements $\alpha \in \pi_n(X, *)$ obtained in this manner from some F determines the subgroup $G_n(X, *)$.

Not all results about homotopy groups are preserved for the evaluation subgroups. For example, it is not true that $f: (X, *) \to (Y, *)$ induces a map from $G_n(X, *)$ to $G_n(Y, *)$ (see [4] and [5]). However, if f is a homotopy domination, it is true that

$$f_*: \pi_n(X, *) \to \pi_n(Y, *)$$

carries $G_n(X, *)$ into $G_n(Y, *)$ (see [7]). Then, in [7] it was shown that if X and Y are both of the homotopy type of a CW-complex and if f is a homotopy equivalence, then f carries $G_n(X, *)$ isomorphically onto $G_n(Y, *)$.

3.1. THEOREM. Let (X, *) be a D-space and let

$$p: (X, *) \rightarrow (X, *) = ((X_{\lambda}, *), p_{\lambda \lambda'}, \Lambda)$$

be an $HPol_{\star}$ -expansion with (X, *) a D-system. Consider the homomorphism

$$(p_{\lambda\lambda'})_{\star}$$
: $\pi_n(X_{\lambda'}, *) \to \pi_n(X_{\lambda}, *)$ for $n \ge 1$ and $\lambda \le \lambda'$.

Then the following pro-group is well defined:

$$pro-G_n(X, *) = (G_n(X_{\lambda}, *), (p_{\lambda\lambda'})_*, \Lambda)$$

and it is a subobject of $pro-\pi_n(X, *)$. This pro-group depends on (X, *) up to a natural isomorphism of pro-groups.

Proof. For $\lambda \leq \lambda'$ the bonding map

$$p_{\lambda\lambda'}\colon (X_{\lambda'}, *) \to (X_{\lambda}, *)$$

is a homotopy domination. By [7] it is induced by the homomorphism

$$(p_{\lambda\lambda'})_*$$
: $G_n(X_{\lambda'}, *) \rightarrow G_n(X_{\lambda}, *)$.

Clearly, $(G_n(X_\lambda, *), (p_{\lambda\lambda'})_*, \Lambda)$ is a pro-group.

If we consider the inclusions

$$i_{\lambda}: G_n(X_{\lambda}, *) \to \pi_n(X_{\lambda}, *)$$
 for every $\lambda \in \Lambda$,

then $i = (i_{\lambda})$ is a monomorphism of pro-groups.

Now, if $q: (X, *) \to (Y, *) = ((Y_{\mu}, *), q_{\mu\mu'}, M)$ is another $HPol_*$ -expansion of (X, *), with (Y, *) a D-system, then there exists a unique isomorphism $j: (X, *) \to (Y, *)$ in the category pro- $HPol_*$ such that jp = q. Then j induces an isomorphism of pro-groups

$$j_{\star}(j_{\lambda u}): (G_n(X_{\lambda}, \star), (p_{\lambda \lambda'})_{\star}, \Lambda) \rightarrow (G_n(Y_u, \star), (q_{uu'})_{\star}, M).$$

Therefore, one can assign to the *D*-space (X, *) the equivalence class of progroups which contains $(G_n(X_\lambda, *), (p_{\lambda\lambda'})_*, \Lambda)$. Denote this class by pro- $G_n(X, *)$.

3.2. Definition. The pro-group pro- $G_n(X, *)$ is called the *n*-th evaluation pro-group of the D-space (X, *).

The limit $\check{G}_n(X, *) = \lim \text{pro-}G_n(X, *)$ is called the *n*-th shape evaluation group of the D-space (X, *).

The monomorphism of pro-groups

i:
$$\operatorname{pro-}G_n(X, *) \to \operatorname{pro-}\pi_n(X, *)$$

induces a monomorphism of groups \check{i} : $\check{G}_n(X, *) \to \check{\pi}_n(X, *)$.

Clearly, $\check{G}_n(X, *)$ is defined up to a natural isomorphism of groups.

If $(X, *) \in HPol_*$, then pro- $G_n(X, *)$ is a rudimentary pro-group and $\check{G}_n(X, *) = G_n(X, *)$. But, generally, this equality is false since just $\check{\pi}_n(X, *)$ differs from $\pi_n(X, *)$.

3.3. THEOREM. Let (X, *) and (Y, *) be two D-spaces. If $F: (X, *) \rightarrow (Y, *)$ is a pointed shape domination, then F induces a natural homomorphism of progroups

$$\operatorname{pro-}G_n(F)$$
: $\operatorname{pro-}G_n(X, *) \to \operatorname{pro-}G_n(Y, *)$

and a natural homomorphism of groups

$$\check{G}_n(F)$$
: $\check{G}_n(X, *) \to \check{G}_n(Y, *)$.

Proof. Let $G: (Y, *) \rightarrow (X, *)$ be a right shape inverse of F and let

$$p: (X, *) \to (X, *) = ((X_{\lambda}, *), p_{\lambda \lambda'}, \Lambda), q: (Y, *) \to (Y, *) = ((Y_{\mu}, *), q_{\mu \mu'}, M)$$

be $HPol_*$ -expansions such that (X, *) and (Y, *) are *D*-systems. Consider

$$F = (f_{\mu}, \varphi): (X, *) \rightarrow (Y, *), \qquad G = (g_{\lambda}, \psi): (Y, *) \rightarrow (X, *),$$

two morphisms in pro-HPol_{*} defining the morphisms F and G, respectively, i.e., qF = Fp and pG = Gq. The relation $FG = 1_Y$ implies that each $\mu \in M$

admits $\mu' \in M$, $\mu' \geqslant \psi \varphi(\mu)$, $\mu' \geqslant \mu$ such that

$$f_{\mu}g_{\varphi(\mu)}q_{\psi\varphi(\mu)\mu'}=q_{\mu\mu'}.$$

Consequently, since $q_{\mu\mu'}$ has a right homotopy inverse $q_{\mu\mu'}^*$, we obtain

$$f_{\mu} [g_{\varphi(\mu)} q_{\psi\varphi(\mu)\mu'} q_{\mu\mu'}^*] = 1_{Y_{\mu}},$$

which shows that f_{μ} is a homotopy domination. Then, by [7], Propositions 1-4, we deduce that the homomorphism

$$(f_{\mu})_{*}: \pi_{n}(X_{\varphi(\mu)}, *) \to \pi_{n}(Y_{\mu}, *)$$

carries $G_n(X_{\varphi(\mu)}, *)$ into $G_n(Y_{\mu}, *)$. Thus, we obtain a homomorphism of progroups

$$\operatorname{pro-}G_n(F) = ((f_u)_*, \varphi): \operatorname{pro-}G_n(X, *) \to \operatorname{pro-}G_n(Y, *).$$

The homomorphism $\check{G}_n(F)$ is the inverse limit $\limsup \operatorname{Gr}_n(F)$.

3.4. COROLLARY. If (X, *) and (Y, *) are D-spaces and $F: (X, *) \rightarrow (Y, *)$ is a pointed shape equivalence, then

$$\operatorname{pro-}G_n(F)$$
: $\operatorname{pro-}G_n(X, *) \to \operatorname{pro-}G_n(Y, *)$, $\check{G}_n(F)$: $\check{G}_n(X, *) \to \check{G}_n(Y, *)$ are isomorphisms.

3.5. THEOREM. Let $F: (X, *) \rightarrow (Y, *)$ be a pointed shape morphism between two D-spaces such that F has a left shape inverse

$$F': (Y, *) \rightarrow (X, *)$$

and consider the homomorphism

$$\check{\pi}_n(F)$$
: $\check{\pi}_n(X, *) \to \check{\pi}_n(Y, *)$.

Then $\check{\pi}_n(F)(\alpha) \in \check{G}_n(Y, *)$ implies $\alpha \in \check{G}_n(X, *)$.

Proof. With the same notation as in Theorem 3.3, each λ admits $\lambda' \in \Lambda$, $\lambda' \geqslant \varphi \psi(\lambda)$, $\lambda' \geqslant \lambda$, such that

$$g_{\lambda} f_{\psi(\lambda)} p_{\varphi\psi(\lambda)\lambda'} = p_{\lambda\lambda'}.$$

Since (X, *) is a *D*-system, g_{λ} is a homotopy domination. Using [7], Propositions 1-4, we obtain a homomorphism of groups

$$\check{G}_n(F') = \lim \operatorname{pro-}G_n(F') = \check{\pi}_n(F')/\check{G}_n(Y, *) : \check{G}_n(Y, *) \to \check{G}_n(X, *).$$

If $\check{\pi}_n(F)(\alpha) = \beta \in \check{G}_n(Y, *)$, we can write

$$\alpha = \check{\pi}_n(F'F)(\alpha) = \check{\pi}_n(F')\check{\pi}_n(F)(\alpha) = G_n(F')(\beta) \in \check{G}_n(X, *)$$

for $\beta = \check{\pi}_n(F)(\alpha)$.

3.6. THEOREM. Let (X, *) be a D-space and let

$$p = (p_{\lambda}): (X, *) \rightarrow (X, *) = ((X_{\lambda}, *), p_{\lambda \lambda'}, \Lambda)$$

be an $HTop_{\star}$ -expansion such that for every λ the H-map

$$p_{\lambda} \colon (X, *) \to (X_{\lambda}, *)$$

is a homotopy domination and $(X_{\lambda}, *)$ is a D-space. Then there exist an inverse system of groups

$$\check{G}_n(X, *) = (\check{G}_n(X_\lambda, *), \check{G}_n(p_{\lambda\lambda'}), \Lambda)$$

and a natural isomorphism

$$\check{G}_n(X, *) \cong \lim \check{G}_n(X, *).$$

Proof. Under the imposed conditions there exist evaluation shape groups $\check{G}_n(X, *)$, $\check{G}_n(X_{\lambda}, *)$, $\lambda \in \Lambda$, and homomorphisms

$$\check{G}_n(p_{\lambda}): \check{G}_n(X, *) \to \check{G}_n(X_{\lambda}, *).$$

Moreover, by the relation $p_{\lambda\lambda'} p_{\lambda'} = p_{\lambda}$, $\lambda \leq \lambda'$, and since p_{λ} is a homotopy domination, it follows that so is also $p_{\lambda\lambda'}$. In this way we obtain an inverse system of groups

$$\check{G}_n(X, \star) = (\check{G}_n(X_\lambda, \star), \check{G}_n(p_{\lambda\lambda'}), \Lambda)$$

and a homomorphism of pro-groups

$$\check{G}_n(p) = (\check{G}_n(p_{\lambda})): \check{G}_n(X, *) \to \check{G}_n(X, *).$$

Therefore, a homomorphism of groups is defined:

$$\lim \check{G}_n(p) \colon \check{G}_n(X, *) \to \lim \check{G}_n(X, *);$$

namely,

$$\lim \check{G}_n(p) = \lim_{\lambda} \check{\pi}_n(p_{\lambda}) / \check{G}_n(X, *).$$

It follows ([9], Theorem 7, p. 130) that $\lim \check{G}_n(p)$ is a monomorphism.

Now, let $q = (q_{\mu})$: $(X, *) \rightarrow (Y, *) = ((Y_{\mu}, *), q_{\mu\mu'}, M)$ be an HPol_{*}-expansion with (Y, *) a D-system in HPol_{*}. There exist ([9], I, Section 4.1) two morphisms

$$f: (X, *) \rightarrow (Y, *)$$
 and $g: (Y, *) \rightarrow (X, *)$

in pro-HTop_{*} such that $fg = 1_Y$ and g induces $\lim \check{G}_n(p_\lambda)$. Applying the fact that $\lim_{\lambda} \check{\pi}_n(p_\lambda)$ is an epimorphism ([9], Theorem 7, p. 130) and using Theorem 3.5 we see that $\lim_{\lambda} \check{G}_n(p_\lambda)$ is also an epimorphism.

- 3.7. COROLLARY. If (X, *) is a D-space for which there exists an $HPol_*$ -expansion $p: (X, *) \rightarrow (X, *)$ with (X, *) a D-sequence $((X_n, *), p_{nn+1})$ in $HPol_*$, then $\check{G}_n(X, *) = 0$ iff $pro-G_n(X, *) \cong 0$ in pro-Grp.
 - 3.8. Examples. (i) Let $(\Sigma, *)$ be the pointed Warsaw circle. Then

pro-
$$G_n(\Sigma, *) = G_n(S^1, *) = 0, \quad n \ge 2,$$

and

$$\operatorname{pro-}G_1(\Sigma, *) = G_1(S^1) \cong Z$$

(see [5], Theorem 5.4).

(ii) Let (H, *) be the pointed Hawaiian earring. Clearly,

$$\operatorname{pro-}G_n(H, *) = 0$$
 for $n \ge 2$.

For n = 1 we have (see [7], Corollary 2.4)

$$G_1(X_m, *) \subseteq Z(\pi_1(X_m, *)),$$

the center of

$$\pi_1(X_m, *) = \underbrace{Z * \ldots * Z}_m.$$

Thus, $G_1(X_1, *) = Z$ and $G_1(X_m, *) = 0$ if $m \ge 2$. In conclusion, for $n \ge 1$, $\check{G}_n(H, *) = 0$.

- 4. ε -cross-sections for approximate fibrations.
- 4.1. The approximate fibrations were introduced and studied by Coram and Duvall ([2], [3]) by considering the following approximate homotopy lifting property (AHLP). A map $p: E \to B$ between compact metric ANR's has AHLP with respect to a space X provided that for every $\varepsilon > 0$ and for each map $h: X \to E$ and each homotopy $H: X \times I \to B$, with $ph = H_0$, there exists a homotopy $\tilde{H}: X \times I \to E$ satisfying $\tilde{H}_0 = h$ and $d(p\tilde{H}, H) < \varepsilon$. For an approximate fibration $p: E \to B$ we obtain an exact sequence of groups:

$$\ldots \to \check{\pi}_k(F, *) \stackrel{i_*}{\to} \pi_k(E, *) \stackrel{p_*}{\to} \pi_k(B, *) \stackrel{d}{\to} \check{\pi}_{k-1}(F, *) \to \ldots,$$

where $F = p^{-1}(*)$ is the fiber over the base point and $i: (F, *) \rightarrow (E, *)$ is the inclusion map.

4.2. THEOREM. Let $p: E \to S^n$ be an approximate fibration, $n \ge 2$. If the fiber (F, *) is a D-space, then $d(\pi_n(S^n, *)) \subseteq \check{G}_{n-1}(F, *)$.

Proof. This theorem is a generalization of Gottlieb's theorem ([7], Theorem 2.6) for Hurewicz fibrations, whose proof is based on the Stasheff's classification theorem [13] (see also [6]). Unfortunately, a similar classification theorem for approximate fibrations is not known. However, we can prove our theorem using the s-fibrations [8].

Recall that an s-fibration is a morphism

$$p = (p_{\lambda}): E = (E_{\lambda}, q_{\lambda \lambda'}, \Lambda) \rightarrow B$$

in pro-Top, where Λ is a cofinite and directed set, B is an ANR and satisfies the following form of HLP. Given $\lambda \in \Lambda$ there exists $\lambda' \geqslant \lambda$ such that, whenever X is a topological space and $g: X \to E_{\lambda}$ and $H: X \times I \to B$ are maps with $p_{\lambda}g = H_0$, there exists $G: X \times I \to E_{\lambda'}$ so that $p_{\lambda'}G = H$ and $q_{\lambda\lambda'}G_0 = g$. If $x \in B$, the fiber of p at x is the inverse system

$$F = p^{-1}(x) = (p^{-1}(x), q_{\lambda\lambda'}/p^{-1}(x), \Lambda).$$

To the given approximate fibration $p: E \to S^n$ one can associate ([8], Theorem 3.1) an s-fibration

$$p = (p_i)$$
: $E = (E_i, q_{ij}, N) \rightarrow S^n$.

Coram and Duvall established [2] that the fibers of an approximate fibration are FANR's. Then, since (F, *) is a *D*-space, we can suppose that all pointed fibers $(p_i^{-1}(*), *)$ are *D*-spaces. Now, to the s-fibration p there corresponds ([8], Theorem 11.1) a bundle equivalence

$$f: \mathbf{F} \times S^{n-1} \to \mathbf{F} \times S^{n-1}$$

such that $f/F \times s_0 = 1_{F \times s_0}$. By composing with the first projection and using Theorem 3.6, we obtain an element $[pr_1 \circ f] \in \check{G}_{n-1}(F, *)$. We shall prove that

$$[\operatorname{pr}_1 \circ f] = d([1_{\operatorname{sn}}]).$$

In fact, using the covering homotopy theorem ([8], Theorem 5.3) we obtain an element $u \in \check{\pi}_n(E, F, *)$ for which $p_*(u) = [1_{S^n}]$, where p_* is the isomorphism

$$p_{\star}$$
: $\check{\pi}_n(E, F, \star) \cong \pi_n(S^n, \star)$.

Then $d([1_{S^n}]) = d(p_*(u))$ and by [2], Corollary 3.5, we get the equality

$$d([1_{s^n}]) = \delta p_*^{-1} p_*(u) = \delta(u),$$

where δ : $\check{\pi}_n(E, F, *) \to \check{\pi}_{n-1}(F, *)$ is the usual boundary homomorphism. But $\delta(u) = [\operatorname{pr}_1 \circ f]$, so that we obtain $[\operatorname{pr}_1 \circ f] = d([1_{S^n}])$, which implies the inclusion

$$d(\pi_n(S^n, *)) \subseteq \check{G}_{n-1}(F, *).$$

- 4.3. We recall from [12] that an ε -cross-section (for $\varepsilon > 0$) of an approximate fibration $p: E \to B$ is a map $s: B \to E$ such that $d(ps, 1_B) < \varepsilon$. If p has an ε -cross-section for each $\varepsilon > 0$, we say that p has approximate cross-sections.
- **4.4.** Corollary. Let $p: E \to S^n$ be an approximate fibration. If the fiber (F, *) is a D-space such that $\check{G}_{n-1}(F, *) = 0$, then p has approximate cross-sections.

Proof. Using the exact sequence of p and Theorem 4.2, we obtain

$$\operatorname{Im} d \subseteq \check{G}_{n-1}(F, *) = 0,$$

which implies $\operatorname{Ker} d = \pi_n(S^n, *)$, and therefore $p_*: \pi_n(E, *) \to \pi_n(S^n, *)$ is surjective. There exist

$$s': (S^n, *) \rightarrow (E, *)$$
 and $H: (S^n \times I, * \times I) \rightarrow (S^n, *)$

such that $H: ps' \simeq 1_{s^n}$. Then for every $\varepsilon > 0$ there exists $\tilde{H}: S^n \times I \to E$ with $\tilde{H}_0 = s'$ and $d(p\tilde{H}, H) < \varepsilon$. Consider $s: S^n \to E$ defined by $s = \tilde{H}_1$. Then

$$d(ps(x), x) = d(p\tilde{H}(x, 1), H(x, 1)) < \varepsilon$$
 for every $x \in S^n$.

Therefore $d(ps, 1_{sn}) < \varepsilon$. Thus s is an ε -cross-section.

4.5. Example. Let (H, *) be the pointed Hawaiian earring and let $p: E \to S^n$ be an approximate fibration with the fiber (H, *). Then, for $n \ge 2$, p has approximate cross-sections.

REFERENCES

- [1] J. C. Becker and D. H. Gottlieb, Covering of fibrations, Compositio Math. 26.2 (1973), pp. 119-128.
- [2] D. S. Coram and P. F. Duvall, Approximate fibrations, Rocky Mountain J. Math. 7 (1977), pp. 275-288.
- [3] Approximate fibrations and a movability condition for maps, Pacific J. Math. 72 (1977), pp. 41-56.
- [4] D. H. Gottlieb, A new invariant of homotopy type and some diverse applications, Bull. Amer. Math. Soc. 71 (1965), pp. 517-518.
- [5] A certain subgroup of the fundamental group, Amer. J. Math. 87 (1965), pp. 840-856.
- [6] On fibre spaces and the evaluation map, Ann. of Math. 87 (1968), pp. 42-55.
- [7] Evaluation subgroups of homotopy groups, Amer. J. Math. 91 (1969), pp. 729-756.
- [8] L. S. Husch and J. R. Stoughton, s-fibrations, Fund. Math. 106 (1980), pp. 105-126.
- [9] S. Mardešić and J. Segal, Shape Theory, North-Holland Publ. Co., 1982.
- [10] On the Whitehead theorem in shape theory. I, Fund. Math. 91 (1976), pp. 51-64.
- [11] R. H. Overton and J. Segal, A new construction of movable compacta, Glasnik Mat. 6 (1971), pp. 361-363.
- [12] T. B. Rushing, Cell-like maps, approximate fibrations and shape fibrations, Geometry Topology, Proc. Conf. 1977, Athens, Ga. (1979), pp. 631-648.
- [13] J. Stasheff, A classification theorem for fibre spaces, Topology 2 (1963), pp. 239-246.

FACULTY OF MATHEMATICS UNIVERSITY OF IAȘI IAȘI, R. S. ROMÂNIA

Reçu par la Rédaction le 15.12.1985