ON COVERINGS OF A UNIFORMITY

BY

ANNA KUCIA (KATOWICE)

In Isbell's book [1], p. 52, there is raised a question whether or not the coverings of a given uniformity, the cardinalities of which are less than a given cardinal number \(m \), form a base for a uniformity. Shirota [3] was the first who answered positively to this question in the case of a fine uniformity for the given topology. The answer is known to be positive for \(m = \aleph_0 \) (cf. [1], exercise, p. 52); the answer is also positive for uniformities having bases consisting of point-finite coverings (cf. [1], Theorem 28, p. 69, or, in a more precise form, the paper [2] of Kulpa) and for uniformities having bases consisting of \(\sigma \)-point-finite coverings (cf. Vidossich [4]).

In this note we shall give a positive solution of Isbell's question, assuming the generalized continuum hypothesis (i.e., if \(n < m \), then \(2^n \leq m \) for all cardinal numbers).

A covering \(\mathcal{V} \) is a point-star-refinement of a covering \(\mathcal{U} \) if, for each \(x \) from \(X \), there exists a \(U \) in \(\mathcal{U} \) such that \(\text{st} (x, \mathcal{V}) \subseteq U \); it is a star-refinement of \(\mathcal{U} \) if, for each \(V \) in \(\mathcal{V} \), there exists a \(U \) in \(\mathcal{U} \) such that \(\text{st} (V, \mathcal{V}) \subseteq U \); recall that a point-star-refinement, if applied two times, gives a star-refinement.

THEOREM. Let \(\mu \) be a uniformity on \(X \) and let \(m \) be an infinite cardinal number. Then the family of coverings from \(\mu \), the cardinalities of which are less than \(m \), is a base for a uniformity \(\nu, \nu \subseteq \mu \).

Proof. It suffices to show that, for each \(\mathcal{U} \) from \(\mu \), there exists in \(\mu \) a covering \(\mathcal{W} \) being a point-star-refinement of \(\mathcal{U} \) and such that \(\text{card} \mathcal{W} \leq \text{card} \mathcal{U} \) or \(\mathcal{W} \) is finite if \(\mathcal{U} \) is finite.

Let \(\lambda \) be an initial ordinal number for the cardinality of \(\mathcal{U} \). We can assume that \(\mathcal{U} = \{ U_\alpha : \alpha < \lambda \} \). Let \(\mathcal{V} \) be an arbitrary star-refinement of \(\mathcal{U} \) belonging to \(\mu \). Define \(p(V) \) for \(V \in \mathcal{V} \) to be the least \(a \) such that \(U_\alpha \ni \text{st}(V, \mathcal{V}) \), and let \(\mathcal{V}_a = \{ V : p(V) = a \} \). We have

\[
(1) \quad \text{st}(V, \mathcal{V}) \subseteq U_\alpha \quad \text{for} \quad V \in \mathcal{V}_a.
\]
For each \(a \) we define a partition of the collection \(\mathcal{V}_a \) as follows: elements \(V \) and \(V' \) of \(\mathcal{V}_a \) are in the same element of the partition iff

\[
V \subset U_\gamma \iff V' \subset U_\gamma \quad \text{for each } \gamma, \text{ where } \gamma \leq a.
\]

The set of all elements of the partition of \(\mathcal{V}_a \) is of the cardinality not greater than the cardinality of the family of all subsets of the set \(\{ \gamma : \gamma \leq a \} \), and so, in virtue of the generalized continuum hypothesis, it is not greater than card \(\mathcal{W} \) or is finite if \(\mathcal{W} \) is finite.

Let \(\mathcal{W}_a \) be the collection consisting of unions of elements of the partition of \(\mathcal{V}_a \). Let \(\mathcal{W} = \bigcup \{ \mathcal{W}_a : a < \lambda \} \).

It is obvious that \(\mathcal{W} \) is a covering belonging to \(\mu \) (since \(\mathcal{V} \) is a refinement of \(\mathcal{W} \) and \(\mathcal{V} \subset \mu \)) and that card \(\mathcal{W} \leq \text{card } \mathcal{W} \) or \(\mathcal{W} \) is finite.

It remains to prove that \(\mathcal{W} \) is a point-star-refinement of \(\mathcal{W} \). To do this take \(x \in X \). Let \(a(x) = \min \{ a : x \in W \in \mathcal{W}_a \} \). We shall show that \(\text{st}(x, \mathcal{W}) = U_{a(x)} \). From the definition of \(a(x) \) it follows that there exists a \(V \in \mathcal{V}_{a(x)} \) such that \(x \in V \). By (1), we get \(x \in V \subset \text{st}(V, \mathcal{V}) \subset U_{a(x)} \).

Let \(W \) be such that \(x \in W \in \mathcal{W}_a \). There exists \(V' \in \mathcal{V}_a \) such that \(x \in V' \) and such that \(V' \) belongs to that element of the partition of \(\mathcal{V}_a \) the union of which is \(W \).

But \(x \in V \cap V' \). Hence \(V' \subset \text{st}(V, \mathcal{V}) \subset U_{a(x)} \). By definition (2) of the partition and the inequality \(a(x) \leq a \), we infer that \(W \) is contained in \(U_{a(x)} \).

Since \(W \) is an arbitrary element of \(\mathcal{W} \) such that \(x \in W \), we infer that \(\text{st}(x, \mathcal{W}) \subset U_{a(x)} \).

REFERENCES

SILESIAN UNIVERSITY, KATOWICE

Reçu par la Rédaction le 27. 7. 1971;
en version modifiée le 10. 12. 1971