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1. Let a be an algebraic integer of degree n over Q, different from zero
and roots of unity. We consider

M(@) = [] max(1, la),
i=1

where a,,...,a, denote the conjugates of a. Dobrowolski ([1]) has shown
that

loglog n'\?
M) > 1+(1—s)(°]g0:5")

for arbitrary positive ¢ and n > nq(g). His proof depends on the construction
of an auxiliary polynomial with small coefficients, for which purpose a
sharpened version of Siegel’s lemma is employed. But, instead of the coeffi-
cients, it suffices to control the values of that polynomial at certain points.
This observation enables us to simplify the argument considerably by
replacing Siegel’s lemma with Minkowski’s theorem on linear forms. A slight
improvement of the result is obtained too, namely

THEOREM.
loglogn
M(@)>1 +(2—s)( log

2. We state three lemmas, the first of which is due to Dobrowolski.
LeMMA 1.
(1) af #aj for r,seN, r#s, 1<i<n, 1<j<n;
)] | I1 @f—a)|>p" for prime numbers p.
L <i

]
1<j<n

)3 (e > 0; n> ny(e).

LY/
INA
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LEMMA 2. Let Q < N be a finite set such that

3) deg(@) =n for qeQ

and let R eN for qe Q. Moreover, let A, be positive real numbers having the
property that for arbitrary F(x)e Z[x] the inequalities

@) |ﬁ FO@f)| <4, (@eQ;r=0,...,R,—1)
i=1

imply already

(5) F@)=F@)=..=F"""@)=0 (geQ).

Then

A—=3(Y R?)log(n) R
log M (a) > 7(%:1{ ;IZg(RZ "),
) 4R,
where the sums are extended over qeQ and
A =—logn H Agr-
qeQ r=0

Proof. Let N =n) R, and consider a polynomial in x of degree N —1
with indeterminate coefficients x;:

N-1 .
D(x;x)= Y x;-x.
j=o
The terms
d N- "
Lo =Y jG=1)...(- 9U-n
T 2065 %) o j};,rj(J D...(j—r+)afu"x;

(qeQ; r=0,....,R,—1;i=1,...,n

constitute a system of N linear forms in the x;s. We denote the absolute
value of its determinant by D. Then

Rg-
I1 I 4
qeQ r=0

since otherwise Minkowski’s theorem (which is easily extended to cover the
case D = 0) would supply numbers

ag,...,ay-1€Z, not all zero,

such that

F(x) : = ®(x; a)eZ[x]\{0}
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would satisfy (4) and hence also (5). This means (cf. (1))
I1 x| F(x),
q<Q

fq(x) signifying the minimal polynomial of «f By (3) we obtain a
contradiction:
N—13>degF(x) > deg [] f,(» 1 = N.
q¢Q
On the other hand, Hadamard’s inequality yields

Rg=1 »n N1
D[] IT II {X liG=1)...(J—r+1)ou=n2}112
qeQ r=0 i=1 j=r
Rg—1 »
< l—[ n {Nr+ l/2max(1’ Iail)qN}
qeQ r=0 i=1

2
— N"ZR32 . pq (a)NZqR",

and the assertion follows. O

It remains to prepare a tool for dealing with condition (3). Although
Lemma 3 of [1] would suffice for our present purpose, the following lemma
may be of independent interest.

LeMMA 3. Let p be a prime and deg(a’) =d <n. Then M (a) = M (a”) or
else there is a p-th root of unity { such that deg({a) =d and M (x) > M ({a).
This implies that one may assume

(6) deg(a?) =n for all primes p

in most cases when lower bounds for M (a) are concerned. Indeed, suppose
we have proved

) M(@) > 1+6(n)

for all o subject to (6) and all n, @ being a positive non-increasing function.
Then induction on n yields immediately that (7) generally holds. If (7) is
known only for n>n, we apply the same argument to ©*(n)
= min(© (n), ¢}, where c is some positive constant such that

M(a)>1+4c for 1<n<n,,

and observe that ©* (n) = @ (n) for large n if, additionally, @ (n) tends to zero
for n— oo.

Proof of Lemma 3. If n/d = [Q(a): Q(«?)] = p, then each conjugate
of a? occurs exactly p times among the numbers «f,...,a2; thus

M@y = ] max(l, laf) = M.

i=1
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Now let n/d # p. Then the equation x?—a” = 0 is reducible over Q(a”), say
X*—a? =g(Qh(x), g(x), h(x)eQ@)[x], 1<degg(x) =:1t<p.

Since
p .
xP—aP = [] (x—ae®/),
s=1

it follows by considering the constant term of g(x) that
la'e Q(a?), & a pth root of unity.
But kt+1Ip =1 for suitable k, le Z, and so
{a =l (2P)'e Q(aP), where ( := ¢

Thus we have Q({a) = Q(aP), ie, deg({a) =d, and (e Q(®). If {,,...,{, are
the conjugates of { relative to Q(a), then each conjugate of {a over Q occurs
exactly n/d times among the numbers {, a,,...,{,a,; hence

M@ = [] max(l, |Gal) = MC)™ > M(Ca). O

i=1

3. Proof of the theorem. We assume (6) and choose in Lemma 2
Q = {1} U P, where P is the set of all prime numbers p < u. Further we put
R, =R, R, =1 for peP. Then the numbers

Ay, =1 (r=0,...,R-1),
Apo = p"*  (peP)
satisfy the required conditions: (4) implies first
F@=F@=..=F®Yg=0 ie, £ F(x),
and then, by (2), F(a?) =0 for pe P. Hence
R g log p—3 {R*+n(u)} log(n {R+ = (u)})
M > R m ) R+ 3, 7)

p<u

logn (log n)?
= y u= ,
loglogn loglogn
we obtain by means of the prime number theorem

log M (a) > 2 ('°lg::g”) (1+o0(1)) > (2— )(l"gb‘”)3

Finally, setting

logn
if n is sufficiently large. This proves the assertion. O
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Annex. In view of the proof of Lemma 2, one will naturally suppose that
the determinant considered there can be explicitly expressed by a product
of differences, similar to the Vandermondian. This is in fact true; and
E. Dobrowolski has just sent me an elegant proof which I shall record here.*
As a consequence, the preceding proof may be rearranged so that
Minkowski’s theorem as well as any reminiscence of transcendence theory is
avoided.

Dobrowolski argues as follows: Consider the vector valued function

p: C->C" o(@=(1,z,...,28 Y

together with its derivatives . The determinant in question is of the form

Ly-1)

D=det[@(zy),--, @ (21)see s @)y 0™V (za)]

j=1

(In Lemma 2: z, = a}',...,z, = a3, Zpsq1 =032, ..., 230 =022, ... and L,
=..=L, =Ry, Lyy; = ... =Ly =R,,,... if Q=1{qy,q;,...}.) Now, for
given h, let

q1°

(4o0)(2) =9 (2), (4,+10)(2) =(4,0)z+h)—(4,9)(z) (r=0).
Then

® 9@ = T (=1 (;><p(z+(r—k)h)
k=0

* Editors’ note: As pointed out by A. Schinzel, the determinant in question was
evaluated by C. Meray in 1867 (cf. M. Shibayama, T6hoku Mathematical Journal 2 (1912),
p- 143-146).
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and
lim h™"(4, 9)(z) = ¢ (2).
h—0
Hence
D = limh™Mdet[4o0(zy),..., 41, -1 @(21), ...
h—0
-~-,AO¢(Zm)!'-"ALm—l (p(zm)]a
m Lj"’l
where M= ) Y i
ji=1 i=1

From (8) it follows, on taking linear combinations of the columns, that

D =1lim h™Mdet[¢(zy), @(zy+h),..., 0(z, +(Ly — 1) h), ...
h=0

cers @Zm)s oo @(zm+(L—1) h)],

and this is Vandermonde’s determinant. So

D =] (z—z)"" ﬁ [(L,—D!(L,—2)! ... 2! 11].
k=1

i>j
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