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Asymptotic properties of polynomials with auxiliary
conditions of interpolation *

by J. L. WALsB (Cambridge, Mass.)

Dedicated to the memory of Mieczyslaw Biernacki

It is especially appropriate that this note should be dedicated to the
memory of M. Biernacki, because of his interest in, and important con-
tributions to, the study of polynomials.

Polynomials p,(2) = 27+ ... minimizing a norm on a closed bounded
point set K in the z-plane are important in numerous investigations; of
especial importance [e.g. 4, ch. 7] is the asymptotic relation (due to
Fekete) which they satisfy:

(1) Lim ||pn(2)[m = z(E) ,

where 7(FE) is the capacity (transfinite diameter) of £ and the norm is
taken in the sense of Tchebyscheff:

IPa(2) || = [max |pa(2)] , 2 on E].

The question naturally arises as to whether (1) can be satisfied by a se-
quence of polynomials p,(2) = 2% + ... which are required to satisfy suitable
auxiliary conditions of interpolation in a finite number of points. If the
assigned values of p,(z) are all zero [2], or if there is but a single condition
of interpolation [1], the question has been answered in the affirmative;
the object of the present note is to establish an affirmative answer in the
general case:

THEOREM 1. Let E be a closed bounded set in the z-plane of positive
capacity whose complement K is a region (necessarily containing z = oo),
let g(z) be the generalized Green’s function for K with pole at infinity, and
let h(2) be the harmonic function conjugate to g(z) in K. Set ¢p(2) = esD+iM2)
in K. Let there be given a finite number of distinct points 2,, 2y, 25y ...y 2y
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and assigned values Ag, Ang, ...y Apyy n=r,v+1,v4+2,... 4 necessary
and sufficient condition that there exist polynomials pa(z) =20+ ap2™ 1+ ...,
n=v,v+1,v4+2,.., which satisfy the conditions (1) and

(2) Pn(2k) = Aney, k=1,2,..,v,
i8 that we have
(3) Limsup |4Ane['? < T(E)-lp(2)|, 2 in K,
fn—00
(4) Iimsup |[Anx[tr < v(E), 2 in E.
n—>o0

If all the points 2z; of Theorem 1 lie in E, the hypothesis ¢(E) > 0
may be omitted, as the reader may verify.

THEOREM 2. Theorem 1 remains valid if the assigned points zp are
not distinct, provided K is regular in the sense that it admits a classical
Green’s function g(z) with pole at infinity, and provided conditions (2) are
interpreted as prescribing in each multiple point zr not merely the value
of pa(2) but also the values of the first and perhaps other successive derivatives
of Pa(2); the total number of conditions involving 2 is the multiplicity of zx in
the enumeration. Conditions (3) and (4) remain unchanged in form when
relating to those dertvatives.

A special case of Theorem 2 occurs if z; = 0 for every k; conditions (2)
prescribe merely the coefficients anx, k =n—v4+1,n—»4+2,...,n of
pn(z) =+ A2 .+ Gan.

We proceed with the proof of Theorem 1; in [1] there is established
the necessity of (3) and (4); in fact, the necessity of (4) is contained in (1),
and the necessity of (3) follows from (1) by the generalized Bernstein
lemma [4, § 4.6]). The sufficiency of (3) and (4) in the case » = 1 is also
proved in [1]; to establish this sufficiency in the general case we assume
Theorem 1 valid for prescription of assigned values in »— 1 distinet points
21y %3y «o»y %—1, and prove Theorem 1 as stated. ,

If Qn_2(2) =2""2+... denotes a polynomial of degree n—2 (> »—1)
still to be further restricted, we choose 2, = 0 which involves no loss of
generality) and write

(5). Pa(2) = 2Qn—3(?) +Rn(z) )

where Rnu(z) =27+ ...+ A, 18 a polynomial of degree n. The prescribed
conditions (2) are

Pn(o) = A-m ’
Pu(zk) = Apk = szn—2(zk) +Rn(zk) ’ 1<k<rvr—1 y
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so the interpolation conditions (necessary and sufficient for (2)) con-
cerning ,_(z) are

(6) Qu-slar) = At Tle),

1<kgy-1.

Let Ra(z) satisfy the analogue of (1), and also (as has been indicated)
R,(0) = A,,; such a sequence R,(z) exists [1]. At an arbitrary point z in K
we have by the generalized Bernstein lemma

(7) ligﬂlp |Ra(2)|V" < T(E)-lp(2)] -
By (6), the analogues of (3) and (4) for @Qn—»(2) are (1 <k <v—1)
limsup | 22— LoD 0By ()|, @i K,
n—>c0 %k
limﬁi}p"d—""_zﬂk—) i <t(#), #in ¥,

and these conditions are a consequence of (3), (4), (7), and the analogue
of (1) for R,(2). It follows then from the induction hypothesis that @,_(2)
exists satisfying (6), and satisfying also

lim [|@n—2(2)|** = ©(E), 2 in E,

80 pa(2) defined by (5) satisfies (1) and (2).
To prepare for the proof of Theorem 2 we establish

LEMMA 1. Let E be a closed bounded point set whose complement K is
connecled. Suppose K is regular in the sense that the classical Green’s function
g(2) for K with pole at infinity exists. Suppose qa(2) = 2"+ ... i8 a sequence
of polynomials of respective degrees m such that

(8) lim [|ga(2)|» =z(E), 2 in E.

Then we have also

(9) lim [|gn(2) [V =z(E), =2 in E,

(10) limsup |ga(2)V» < ©(E)-lp(2)|, 2z in K.
n—00

In the notation of Theorem 1, the critical points of ¢(2) have no
limit point in K, so there exists a monotonic decreasing sequence R,, R,, ...
—1 such that no locus Epg,: |p(2)] = B in K has a multiple point. If we
set ||ga(2) || = Ma, it follows from the generalized Bernstein lemma [4, § 4.6]
that we have

(11) Ign(2)| < MaR%, 2 on Eg,.
2‘



20 J. L. Walsh

Since Eg, has no multiple points, there exists some » (>'0) independent
of z such that at each point z of Eg, some circular dise with radius r is
tangent to Ep, there, and the closed disc lies in the closed interior of
a Jordan curve belonging to Eg,. It follows from (11), again by a lemma
due to Bernstein, that we have in each closed disc and hence on Fg, and
on E

, M,R}
lga(z)] < 2=

(12) limsup || ga(2) [ < 7(E)-Re, limsup|iga(2)[V* < <(E) .
n—oo n—0

H

However, 1(F) may be defined by (1) where for each n the polynomial
Pa(z) is of smallest norm, hence for an arbitrary sequence of polynomials
Pa(2) =27+ ... we have

ning |pa(2) [Mm > 7(B);

the corresponding relation is valid for gn(z) =nz""14..., so (9) follows
from (12). Equation (9) implies (10) as in the proof of (11).
It is a consequence of (9) that the relation corresponding to (9) holds

also for the sequence (n =1,2,...) of j-th derivatives ¢’ (2), j > 1, and

for the sequence ¢(z)/n(n—1)... (n—j+1).

Lemma 1 possesses some independent interest; the study of such
relations as (9) and (10) goes back to G. Faber (1920). Equation (9) is
clogsely related also to the discussion given in [4, §§ 7.2-7.7] concerning
interpolation in the zeros of the gi(2).

We proceed with the proof of Theorem 2. The necessity of con-
ditions (3) and (4) follows from Theorem 1 so far as concerns the values
of pa(2), and follows from (9) and (10) so far as concerns the prescribed
values pa(2x), Pul2k), -, P¥*(2x) of the derivatives.

To prove the sufficiency of conditions (3) and (4) for values of pu(2)
and its derivatives, we use induction. We suppose that prescribed in-

terpolation conditions are given in distinct points 0, z,, 23, ..., 2,

pP0) =4, §=0,1,2,..,u;

13 :
it Pg)(zk)=A(kj)’ j=0,1,2,.., m,

where the A’ and 4§ depend on » and satisfy the analogues of (3) and (4).
Thanks to Theorem 1, we may (and do) assume g > 0 without loss of
generality. Our induction hypothesis is that polynomials of respective
degrees n can be determined satisfying both the analogue of (1) and
arbitrary interpolation conditions of form (13) with (3) and (4) valid,
except with x replaced by u—1.
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We define px(2) in the form

(14) Pol®) = 2Qn-ol2) + Bale),  n—3 > pt D prt,
where Q,_s(2) = 2*~24-... and R,(z) =27+ ... are still to be defined. The

prescribed conditions (13) are to be used in conjunction with (14) and
equations derived from (14):

Pu(?) = 2Qn—2(2) + Qn—2(2) + Rr(2) ,
(15) Pn(?) = 2Qn—o(2) + 2Q1'l—2(z) + Rx(2) ,

---------------------------------

PI2) = 2Q%)o(2) + pQ¥1(2) + RY(2) .

Let R,(z) =27+... be a sequence of polynomials (existent by the
induetion hypothesis) satisfying all the conditions (13) of interpolation
except perhaps R¥)(0) = A"’ and satisfying the analogue of (1). How-
ever, R¥(0) satisfies the analogue of (3) or (4). Then equations (15) to-
gether with (13) and (14) define interpolation conditions for @,_,(2) in
the points 0,2z, 2, ...,2, conditions which (since u # 0) determine
successively Q4 ,(0) for j =u—1, u—2,..,1,0 and Q2 5(2x) = 0 for
§j=0,1,2,.., ux, but not involving @Q%',(0). For instance Q¥7(0)
= [A”— R{)(0)]/u. These conditions satisfy the analogue of (3) or (4)
according as the point 0 or 2; concerned lies in K or E. Again by the in-
duction hypothesis, the polynomials @,_.(z) exist and satisfy the analogue
of (1). Consequently the polynomials p,(z) defined by (14) exist satisfying
both (1) and the prescribed conditions (13) of interpolation. Theorem 2
is established.

In the latter part of Theorems 1 and 2 we have shown the existence
of polynomials ps(2) of respective degrees n which satisfy (1) and (2).
It follows a fortiori that (1) is satisfied for the extremal polynomials
Pn(2) =27+ ... which satisfy (2) with the interpretation of Theorem 2,
and minimize the norm | pa(z)||. '

A remark relative to the zeros of the pa(z) is of interest. If E satisfies
the conditions of Theorem 1, if the pa(2)(=27+...) satisfy (1), and if
a bounded subregion D of K contains no limit point of the zeros of the
Pa(2), the relation

lﬂ!pn(z)l”" = 7(B)-|p(2)]

holds uniformly [1, Theorem 3] in any closed subregion of D. Consequently
if #; lies in K and if we have

limsup [pa,(25)]'™ < 7(E)-lp(25)] ,

Np—00

the point 2; is a limit point of zeros of the ps(2).
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It is appropriate to raise the question as to whether the number »
of points z; in Theorems 1 and 2 may be allowed to become infinite with .
We indicate that this s indeed possible provided the prescribed conditions (2)
interpreted as in Theorem 2 are relaved so as mot o prescribe the precise
number of interpolation conditions satisfied by each pn(z). Let the con-
ditions replacing (2) be given in the form

(18) Pal2k) = Anxy, k=1,2,..,

only a finite number of which equations will be prescribed for a particular
Pa(2); of course we suppose (3) and (4) valid. It follows from Theorems 1
and 2 that there exist polynomials psx(z) = 2"+ ... of respective degrees n
(= k) satisfying

Pail2g) = Ay, 1=1,2,..,k,

Lim || pai(2) " = 7(E) .

In particular there exists N, such that we have for n > N,

P2 || < [<(E)+ 317,
and more generally there exists Ny (> k) such that we have for n > N;
Par(2) | < [=(B)+27*]".
We suppose (a8 we may) N, < N, < N;... Let us now define (k =1, 2, ...)

Pal2) =pml2), n <N,,
Pnl(2) =Pur(2)y, Ne<n<Npy, k>1.

There follow the inequalities (k¥ > 1)
lpa(2) ]| < [f(E)+2—k]" y Ne<n< Ny,
and since % becomes infinite with =,

limsup (| pa(2) |M* < 7(E) ,

from which (1) follows. It will be noted that ps(2) satisfies the given
conditions (16) of interpolation so far as conserns the k (= k,) points
%1y 239 ...y 2k, Where k (> 1) is determined by Ny <n < Ny4., and %
becomes infinite with n.

The remark just established is considered in [2] in some detail in
the analogous case that F is a disc |2| < R and the auxiliary conditions
are not of form (16) but prescribe the first & coefficients of pn(2) = 27
+ 002" + @p2™ 1 4 ...; some of the results (loc. cit.) concerning the latter
problem are due to G. Szegdé.
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There is also treated in [2] the special problem obtained by re-
placing (16) with the auxiliary requirement

(17) Plznk) =0, k=1,2,.. ks,

where the z,r are bounded in their totality. Provided merely ks = o(n),
it is proved that the pa(z) exist satisfying (17) and (1). We add here the
additional remark that if pa(2) is the polynomial 27 ... satisfying (17)
and among all such polynomials minimizing ||pa(2)||, then all zeros of pa(z)
other than the z,x lie in the convexr hull of E(*). Indeed, suppose no zni
belongs to E; we have

kn kn
Pa(2) = Gu-snl®) [ [ (z—2ax)y 190 = [ ] 2= 2mel - 1gn-so(2)]

k=1 k=1
where the first factor in the second member does not vanish on F, and
the conclusion follows by a well-known theorem due to Féjer; if some or
all z;; belong to E, a slight extension of this reasoning yields the conclu-
sion. At every point of K exterior to the convex hull of F other than
the limit points of the z,x we have
(18) lim |pa(2)» = |p(2)] ,

n—o

and throughout any closed bounded set of such points this relation is
valid uniformly. The zeros of the pn(2) on any closed bounded subset K,
of K may be factored out from pa(2) without altering the essence of (18)
on K,.

Throughout the present note we have used for the polynomials pa(z)
the Tchebycheff norm. However, equation (1) for the Tchebycheff norm
is equivalent [3] to that equation for any one of a wide category of norms;
any of the latter may be used in Theorems 1 and 2. For instance, if E
is a closed Jordan region, one may use the p-th root of

[[ipaz)Pa8  or  [Ipa(2)idel, >0,
E C

where C is the boundary (assumed rectifiable) of E. Likewise the remark
concerning the position of the zeros of ps(z) satisfying (17) applies to these
and other more general norms.
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