IMBEDDING LOCALLY CONVEX LATTICES
INTO COMPACT LATTICES

BY

ALBERT R. STRALKA (RIVERSIDE, CALIFORNIA)

Let \mathcal{L} be the class of locally convex, distributive topological lattices. All those distributive topological lattices which are compact [5], or locally compact and connected [1], or discrete belong to \mathcal{L}. Relying on the imbedding theorem in [2], it was shown in [6] that if $L \in \mathcal{L}$ and has finite breadth n, then L can be imbedded in a product of n compact chains. The condition of local convexity thus serves to characterize sublattices of finite products of compact chains. In general, it is not even true that compact members of \mathcal{L} can be imbedded in products of chains [3].

In this note we are concerned with the question of when members of \mathcal{L} — without the assumption of finite breadth — can be imbedded in compact lattices. We first show that if $L \in \mathcal{L}$ and L is locally compact and connected, then L can be so imbedded. Next, we give an example of a member of \mathcal{L} — which has the discrete topology — which cannot be imbedded in a compact lattice.

Recall that a topological lattice is a Hausdorff space L with a pair of continuous maps $\wedge, \vee : L \times L \to L$ such that (L, \wedge, \vee) is a lattice. A subset A of a lattice is convex if whenever $a, b \in A$ and $a \leq x \leq b$, then $x \in A$. A topological lattice is locally convex if its topology has a base of convex sets. As noted above, \mathcal{L} will be the class of locally convex, distributive topological lattices. For $L \in \mathcal{L}$ and $a, b \in L$ with $a < b$, the interval from a to b, $[a, b]$, is $\{x \in L ; a \leq x \leq b\}$ and $[a, b]^\#$ is the natural continuous homomorphism of L onto $[a, b]$, i.e., for $x \in L$,

$$[a, b]^\#(x) = (a \vee x) \wedge b = a \vee (x \wedge b).$$

By an imbedding we shall mean an open, injective, continuous homomorphism. For a set W, $\partial(W)$ will be its boundary and W^* will be its closure.

*Partially supported by N.S.F. Grant 33912.
1. Locally compact connected lattices. Throughout this section \(L \) will be an arbitrary but fixed member of \(\mathcal{L} \) which is, in addition, locally compact and connected. The topology on \(L \) will have a neighborhood base of compact convex sets. \(\mathcal{F} \) will denote the set of compact intervals of \(L \). The following lemma will be used often and usually without reference.

Lemma 1.1. Let \(W \) be a compact, convex neighborhood of the point \(p \) of \(L \), let \(w_1, w_2 \in W \), and \(q, r \in L/W \) with \(w_1 < w_2 \) and \(q < p \). Then

(i) \([q, p] \cap \partial(W) \neq \emptyset\);
(ii) \([w_1, w_2] \subseteq W\);
(iii) \([w_1, w_2] \in \mathcal{F}\);
(iv) either \(p \land r \notin W \) or \(p \lor r \notin W \).

Proof. (i) holds, because \([q, p]\) is connected. (ii) and (iii) result from the fact that \(W \) is both compact and convex. If both \(p \land r \) and \(p \lor r \) belong to \(W \), then, because \(W \) is convex, \(r \) would belong to \(W \). Hence (iv) holds.

Now endow \(\mathbb{X} \mathcal{F} \) with coordinate-wise operations and the Tychonov topology. \(\mathbb{X} \mathcal{F} \) becomes a compact distributive topological lattice. The parametric map \(\mathcal{F}^\# : L \to \mathbb{X} \mathcal{F} \) defined by

\[
(\mathcal{F}^\#(x))_{[a, b]} = [a, b]^\#(x)
\]

is a continuous homomorphism. From Mrówka's imbedding theorem in [4] and the discussion in section 3 of [6] we have the following

Lemma 1.2. If \(\mathcal{F} \) separates points in \(L \) (i.e., for \(x, y \in L \) with \(x \neq y \), there is \([a, b] \in \mathcal{F} \) such that \([a, b]^\#(x) \neq [a, b]^\#(y)\)), then \(\mathcal{F}^\# \) is injective. \(\mathcal{F}^\# \) is an imbedding if, in addition, given \(p \in L \) and \(F \) a closed subset of \(L \) not containing \(p \), there are \([a_1, b_1], \ldots, [a_n, b_n] \in \mathcal{F} \) and subsets \(F_1, \ldots, F_n \) of \(L \) such that

\[
F = F_1 \cup \ldots \cup F_n \quad \text{and} \quad [a_i, b_i]^\#(p) \notin ([a_i, b_i]^\#(F_i))^*.
\]

With this result we are now prepared to prove our imbedding theorem.

Theorem 1.3. \(\mathcal{F}^\# : L \to \mathbb{X} \mathcal{F} \) is an imbedding. Thus every locally compact, connected distributive topological lattice can be imbedded in a compact distributive topological lattice.

Proof. We begin by showing that \(\mathcal{F}^\# \) is injective. Let \(x, y \in L \) with \(x \neq y \). Select a compact, convex neighborhood \(W \) of \(x \) which excludes \(y \). Then either \(x \lor y \notin W \) or \(x \land y \notin W \). We assume the latter holds. Then

\[
[x \land y, x] \cap \partial(W) \neq \emptyset.
\]

Let \(w \) be any point of that set. \([w, x] \in \mathcal{F} \) and

\[
[w, x]^\#(y) = w \neq x = [w, x]^\#(x).
\]

Hence \(\mathcal{F}^\# \) is injective.
Now suppose that \(p \in L \) and \(F \) is a closed subset of \(L \) with \(p \notin F \). There is a compact, convex neighborhood \(W \) of \(p \) which is contained in \(L \setminus F \). The sets

\[
B = \partial(W) \cap (p \wedge L) \quad \text{and} \quad T = \partial(W) \cap (p \vee L)
\]

are compact. This implies that there are a subset \(T_0 = \{t_1, \ldots, t_n\} \subseteq T \) and open sets \(U(t_i), \ldots, U(t_n) \) of \(T \) such that \(t_i \in U(t_i) \),

\[
\bigcup_{i=1}^{n} U(t_i) = T \quad \text{and} \quad [p, t_i]^{\#}(p) \notin ([p, t_i]^{\#}(U(t_i)))^* \vee [p, t_i].
\]

Similarly, there are a subset \(B_0 = \{b_1, \ldots, b_m\} \subseteq B \) and open sets \(U(b_1), \ldots, U(b_m) \) of \(B \) such that \(b_i \in U(b_i) \),

\[
\bigcup_{i=1}^{m} U(b_i) = B \quad \text{and} \quad [b_i, p]^{\#}(p) \notin ([b_i, p]^{\#}(U(b_i)))^* \wedge [b_i, p].
\]

Next, we define a map \(\gamma : B \cup T \to B_0 \cup T_0 \) which assigns to an element \(x \) of \(B \cup T \) an element \(\gamma(x) \) of \(B_0 \cup T_0 \) with the property that \(x \in U(\gamma(x)) \). For \(f \in F \), either \(p \wedge f \notin W \) or \(p \vee f \notin W \). Hence

\[
([p \wedge f, p] \cup [p, p \vee f]) \cap \partial(W) \neq \emptyset.
\]

Let \(\delta(f) \) be any point of this set and let \(F_i = \delta^{-1}(\gamma^{-1}(b_i)) \) for \(i = 1, \ldots, m \) and \(F_{m+1} = \delta^{-1}(\gamma^{-1}(t_i)) \) for \(i = 1, \ldots, n \). Then \(F = F_1 \cup \ldots \cup F_{m+n} \). Now, let \(f \in F_i \). We may assume that \(i = 1 \). Then \(b_1 = \gamma(\delta(f)) \) and we have

\[
[b_1, p]^{\#}(f) = b_1 \vee (p \wedge f) \leq b_1 \vee \delta(f).
\]

Hence

\[
[b_1, p]^{\#}(f) \notin ([b_1, p]^{\#}(U(b_i)))^* \wedge [b_1, p].
\]

Therefore, \([b_1, p]^{\#}(p) \notin ([b_1, p]^{\#}(F_i))^* \). It then follows that \(\mathcal{F}^{\#} \) is an imbedding.

Remark. The methods used in this section can be modified to show that if \(L \) is a locally compact, connected (not necessarily distributive) topological lattice such that every pair of distinct points of \(L \) can be separated by a continuous homomorphism into a compact topological lattice, then \(L \) can be imbedded in a compact lattice. In particular, if \(L \in \mathcal{L} \), \(L \) is locally compact and connected and \(\text{Hom}(L, I) \) separates points, then \(L \) can be imbedded in a product of copies of \(I \). (\(I \) is the real interval \([0, 1] \) with the usual operations.)

2. An example. In this section we present an example of a member of \(\mathcal{L} \) which cannot be imbedded in a compact lattice. \(2 \) will be the lattice on \(\{0, 1\} \). Let \(Y \) be the cartesian product of a countable number of copies of \(2 \) with coordinate-wise operations and the \textit{discrete} topology. \(Y \), obviously, belongs to \(\mathcal{L} \). \(\text{Hom}(Y, 2) \) separates points, so \(Y \) has a continuous injective
homomorphism into a compact lattice; in fact, Y has a continuous injective homomorphism onto a compact topological lattice. Suppose that Y is a sublattice of a compact topological lattice K. We may assume that $O_Y = O_K$ and $1_K = 1_Y$. Since $\{O_Y\}$ is an open set in Y, it cannot be a limit of a sequence of points of Y. However, define a_n to be that point of Y whose first n coordinates are zero and all subsequent coordinates are one. Then $\{a_n\}$ is an infinite decreasing sequence in K, so it must have a limit point k and $k \leq a_n$ for all n. Next, we define e_n to be that point of Y whose n-th coordinate is one and all other coordinates are zero. $e_n \wedge a_m = 0$ for $m \neq n$. Then, since K is a compact topological lattice, the infinite distributivity law holds, so

$$O_Y = \bigvee_{n=1}^{\infty} (e_n \wedge k) = k \wedge \left(\bigvee_{n=1}^{\infty} e_n \right) = k \wedge 1_Y = k.$$

This is a contradiction. Hence Y cannot be imbedded in a compact lattice. (See also [7].)

REFERENCES

UNIVERSITY OF CALIFORNIA, RIVERSIDE
RIVERSIDE, CALIFORNIA

Reçu par la Rédaction le 8. 6. 1972