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EXOTIC LOGICS

BY

PAVEL PTAK (PRAGUE)

We call a logic exotic (resp., nearly exotic) if it has no states (resp.,
exactly one state). We show that any logic can be embedded into an exotic
logic with given center. If a logic has a two-valued state, then it can be
embedded into a nearly exotic logic with given center.

Introduction. In the axiomatic quantum mechanics we sometimes ident-
ify the event structure of a quantum system with an orthomodular partially
ordered set. This orthomodular poset is called a logic (of the quantum
system). The states of the system then correspond to the (probability)
measures on the logic and the set of “absolutely comparable” elements of the
system corresponds to the Boolean algebra of all absolutely compatible
elements of the logic (see [3] and [9]).

In this paper we consider logics with extremally small sets of states. We
embed, as announced in the abstract, any logic into an “exotic” type logic
and, moreover, we leave the center as a free parameter. We thus extend the
results of Greechie [2] and Shultz [7]. As a by-product we exhibit an
elementary example of a (nontrivial) logic with exactly one state (cf. [7]).

As indicated above, our considerations have certain interpretations in
the foundations of quantum theory. Since the exotic (resp., nearly exotic)
extension of an orthomodular lattice is again a lattice, our technique can also
find an application in the lattice theory.

1. Preliminaries. Let us first recall basic definitions.

DErinITION 1.1. A logic is a set L endowed with a partial ordering <
and a unary operation ' such that

(i) 0, 1eL;

(i) a<b=>b < a for any a, beL;

(iii) (a') = a for any aelL;

(ivyava =1 and a Aad'=0 for any aeL (the symbols v and A
mean here the lattice-theoretic operations given by <);
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p
(v) V a, exists in L whenever a,e L for any n, 1 <n<p, and aq, < g
n=1
for n # k;
(vi) b=a v (b A a’) whenever a, be L and a < b.
In what follows we reserve the letter L for logics. An example of a logic
is the lattice of projectors of a Hilbert space or, of course, a Boolean algebra.

DerFINITION 1.2. Two elements a, be L are called compatible if there are
three elements c¢,d, ee L such that ¢ <d, d<eé, e<c¢ and a=c v d,
b=cve.

ProrposiTioN 1.1. (i) If a < b, then a, b are compatible.

(i) If a, b are compatible, then a v b and a A b exist and we have a A b
=0 if and only if a<b'.

(i) If a, b are compatible, then a, b’ are compatible (and, as a conse-
quence, vice versa).

The proof is obvious (see also [3]).

DEeFinITION 1.3. An element ae L is called central if a is compatible with
any element of L. We denote by C(L) the set of all central elements of L and
call C(L) the center of L. The logic L is said to have a trivial center if C(L)
=10, 1!

[t} J -

ProrosiTiON 1.2. The set C(L) with the operations ', v, and A inherited
from L is a Boolean algebra. The logic L is a Boolean algebra if and only if L
= C(L).

Proof. The set C(L) can be extended to a maximal Boolean subalgebra
of L (see, e.g., [1]). Since C(L) is obviously the intersection of all maximal
Boolean subalgebras of L, the proof follows. (The rest of Proposition 1.2 is
obvious.)

In the sequel we shall need the construction of a product of logics. Let
us recall the definition.

DeriNiTION 14. Let {L,|ael} be a collection of logics. Denote by [] L,

ael

the ordinary Cartesian product of the sets L, and endow the set [] L, with

ael
!’

the relation < and the unary operation ' as follows. If

k={k,|acl}e[]L, and h={h|ael}e]]L,
ael ael
then k < h (resp., k' = h) if and only if k, < h, (resp., k; = h,) for any ael.
The set || L, with the above-defined relation < and the operation ' is called

ael

the product of the collection {L,|acl}.
ProposiTioN 1.3. Let {L,|ael} be a collection of logics. Then [] L, is a

ael
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logic. If C(L,) = {0, 1} for any acl, then C([] L,).is Boolean isomorphic to

ael

the Boolean algebra of all subsets of I.
The proof is obvious (see also [4]).

DEerFINITION 1.5. A state on a logic L is a mapping s: L— <0, 1) such
that

@) s() =1,

(i) if a, be L and a < b, then s(a v b) = s(a)+s(b).

ProposiTION 14. If a,beL and a < b, then s(a) < s(b) for any state s
on L.

Proof. One uses the orthomodular law (Definition 1.1 (vi)).

The set of states on a logic may generally look more complex than that
of a Boolean algebra. The key results on the set of states can be found for
example in the papers [2] and [5]-[7]. Here we concentrate on a rather
“exotic” situation — on the type of logics with no or exactly one state.

2. Exotic and nearly exotic logics exist. A finite and relatively simple
example of an exotic logic was constructed by Greechie (see [2]). Since we
shall implicitly use it for exhibiting a (finite) nearly exotic logic, let us briefly
recall the construction (see the figure below). One first takes 20 Boolean
algebras with three atoms each and 3 Boolean algebras with four atoms
each. One then “identifies” suitably chosen atoms in the manner illustrated in
the figure. What comes into existence is a (finite lattice) logic L which has
only three- and four-atom Boolean algebras as maximal Boolean subalgebras
of L. Now the logic L is exotic since 1. any state on L would mean a state
on any maximal Boolean subalgebra of L, and 2. the set of atoms of L

The exotic logic of Greechie

admits two partitions into maximal Boolean subalgebras such that the
former partition has 12 classes and the latter has 11 classes. This contradicts
the existence of a state on L (for details see [2]).
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Let us now make the following observation:

ProprosiTION 2.1. If L is an exotic logic, then the product of L with the
two-point Boolean algebra {0, 1} is a nearly exotic logic.

Proof. Let s be a state on L x {0, 1}. Since (1, 0) v (0, 1) =(1, 1), we
see that s(1, 0)+s(0, 1) = 1. If s(1, 0) is positive, then we can easily construct
a state on L. Therefore, s(1,0) =0, and also s(x,0)=0 for any xelL.
Consequently, s(0, 1) = 1, and also s(x, 1) =1 for any xe L. We thus forced
the necessary values for s. One verifies easily that this evaluation really
comes to a state on L x {0, 1}. The logic L x{0, 1} has then exactly one
state.

CoROLLARY 2.1. There exists a ( finite) nearly exotic logic.

We should mention here that there is another way of constructing a
nearly exotic logic (see [7]). Our procedure is considerably simpler.

For the following considerations we need exotic and nearly exotic logics
with trivial centers.

PrOPOSITION 2.2. There exist exotic and nearly exotic logics with trivial
centers.

Proof. The Greechie example of exotic logic has obviously the trivial
center. If L is a nearly exotic logic, then we obtain a nearly exotic logic with
trivial center by taking two copies of L, say L, and L,, forming the disjoint
union L, UL, and identifying 0, resp. 1, in L, with 0, resp. 1, in L,.

3 Embe(idings of logics into the exotic and nearly exotic ones.

DEeFINITION 3.1. A mapping f: L, — L, of two logics is called an embed-
ding if

(1) £(0)=0;

(i) f(@) =(f(a) for any aeL,;

(i) a < b if and only if f(a) < f (), a, be L,;

(iv) if a<b, then f(av b)= f(a) v f(b), a, belL,.

A logic L, is called a sublogic of L, if there exists an embedding of
L, into L,.

ProPoSITION 3.1. Any logic can be embedded into an exotic logic with
trivial center.

Proof. Let L; be a logic and let M be an exotic logic. Take the logic L
which is obtained by forming the disjoint union of L, and M and identifying
0, resp. 1, in L, with O, resp. 1, in M. Then L is obviously exotic and L, is a
sublogic of L.

THEOREM 3.1. Let L, be a logic and let B be a Boolean algebra. Then
there exists an exotic logic L such that

(i) L, is a sublogic of L,

(i) C(L) = B.
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Proof. There is a representation of the Boolean algebra B by a
collection 4 of subsets of a set I. Thus B = (I, 4). Denote further by K the
exotic extension of L, with C(K) = {0, 1} (Proposition 3.1). Put K, = K for
any acl and take the logic

P=]]K,.
ael
The logic L we look for will be a sublogic of P determined by the following
requirement. An element re P belongs to L if (and only if) there exists a finite
partition 2 of I, # = {A;|1 <i < n}, such that A;e 4 for any i, i < n, and r,
=r, provided |p, q} < A; for an index j, 1 <j<n.

Evidently, Oc L, and if ke L, then k'e L. If k, he L and k < h, then k
=h v (k A k). This follows from the definition of L, because if » and # are
the partitions corresponding to k and h, then 2N 4 is the partition
corresponding to k A h'. Therefore L is a logic.

Further, since C(K)= 10,1} for any ael, we see that any central
element of L must have only the elements 0 and 1 for the coordinates. One
checks easily that k = {k,|ae I}, where any k, is either 0 or 1, is an element
of L if and only if the set A = {a|k, =1} belongs to 4. This implies that
C(L) = B.

Finally, since the mapping f: K — L, f(k) =(k, k, k, ...), is an embed-
ding of K into L, we see that L is exotic. Indeed, if s is a state on L, then sf
is a state on K. But K is exotic. Since L, can be embedded in K, we have an
embedding of L, into L and the proof is complete.

Let us now take up the case of nearly exotic logics. We start again with
an auxiliary proposition.

ProrosiTiON 3.2. Let L, be a logic and let L, have a two-valued state.
Then L, can be embedded into a nearly exotic logic L with C(L) = |0, 1)}.

Proof. Embed first L; into an exotic logic K. Take then the logic K
x 10, 1}, which is nearly exotic (Proposition 2.1), and form the disjoint union
L, UK x 0, 1|. Determine now the logic L by identifying elements in L, U K
x 10, 1! as follows. Take a two-valued state s on L, and identify ke L, with
(k, 1)eK x {0, 1} provided s(k) = 1; otherwise, identify ke L, with (k, 0)e K
x {0, 1}. One checks easily that L is a nearly exotic logic containing L,. (If
C(L) # !0, 1}, we form the disjoint union of two Ls and obtain the desired
logic by identifying 0’'s and 1’s.)

THEOREM 3.2. Let L, be a logic having a two-valued state and let B be a
Boolean algebra. Then there is a nearly exotic logic L such that

(i) L, is a sublogic of L,

(i) C(L) = B.

Proof. By Proposition 3.2, we can embed L, into a nearly exotic logic .
K with C(K) = !0, 1}. By Proposition 3.1, we can embed K into an exotic logic
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M with C(M) = {0, 1}. Let (I, 4) be a set representation of B. Choose a
point ael and put L, = K. Put further L, = M for any bel— {a}. Set

V=]]L

cel
and consider the sublogic L of V whose elements are determined as follows.
An element re V belongs to L if (and only if) there is a finite partition £ of
I, #=14;|1<i<n}, such that A4;ed for any i, 1<i<n and r,=r,
provided |p, q} < A4; for an index j, 1 <j<n
One can show in the same manner as in Theorem 3.1 that L is indeed a

logic and C(L) = B. Evidently, L, is a sublogic of L — one takes the natural
mapping f: L, — L, f(k) =(k, k, k, ...). It remains to prove that L is nearly
exotic. Since K is nearly exotic, it suffices to show that L has as many states
as K. Let s be a state on L and let re L. Then there is a partition 2 of I, 2
= 4;|]1<i<n}, such that r,=r, whenever |p,q} < A; for some },
1 <j<n For any i, 1 <i < n, define an element s'e L by requiring that s.
=1if ceA;, and s =0 if ceI—A4;. Put ¥ =r As". Then

r=\/r
and all  are mutually orthogonal in L. This implies that

n

s(r) =Y s(r).

i=1

Suppose now that ae4;, 1 <ip<n If s(r') # 0 for some i # iy, then we

would obtain a state on a product of exotic logics. This is absurd. Then s(r)

= s(rio), and therefore any state on L is determined by a state on K. Since
there is exactly one state on K, the proof is complete.

As a consequence of Theorem 3.2 we infer that any Boolean algebra can
be embedded into a nearly exotic logic (with an arbitrary center). This
among others rules out any chance for extending states on Boolean sublogics
over the entire logic.

4. Appendix on o-complete logics. A logic L is called o-complete if L is
closed under the formation of the upper bounds of the countable mutually
orthogonal subsets of L. Let us again call L exotic or nearly exotic if it has no
or exactly one o-additive state. One can again show that any o-complete
logic can be (6-completely) embedded into an exotic one and any o-complete
logic with a two-valued state can be embedded into a nearly exotic one. (In
the particular case of. o-Boolean algebras, one can show that any g-Boolean
algebra can be embedded into an exotic o-Boolean algebra, and analogously
for nearly exotic o-Boolean algebras.)

The center of a g-complete logic is a a-Boolean algebra and we therefore
may meaningfully translate our questions into the o-complete case. Unfortu-
nately, the constructions of Theorems 3.1 and 3.2 do not always produce a o-
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complete logic. We have not been able to alter the construction to achieve
the positive result in general. (The question may be related to the existence of
the least o-product of o-Boolean algebras — a problem posed as open in the
book by Sikorski (see [8], p. 136).)

On the other hand, the construction works, or may be simply altered,
for the types of o-complete logics which have occupied an important place in
the axiomatic foundations of quantum theories. One example may be logics
with the center equal to a o-algebra of all subsets of a set (see, e.g., [9]),
another example — the logics with all Boolean subalgebras finite (see, e.g.
[2], [3], and [7]). We conclude by stating the results for the above classes of
logics.

THEOREM 4.1. (i) Let L, be a a-complete logic and let B be a c-algebra of
all subsets of a set. Then L, can be a-completely embedded into an exotic logic L
with C(L) = B. If, moreover, L, has a two-valued c-additive state, then L, can
be o-completely embedded into a nearly exotic logic L with C(L) = B.

(i) Let L, be a a-complete logic with all Boolean sublogics finite. Let B
be an arbitrary a-Boolean algebra. Then L, can be a-completely embedded into
an exotic logic L with C(L) = B. If, moreover, L, and B have a two-valued
o-additive state, then L, can be o-completely embedded into a nearly exotic
logic L with C(L) = B.
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