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A semi-global Taylor formula for manifolds

by JaN A. Rempara (Warszawa)

Abstract. A version of Taylor formula for sections of a vector bundle over a manifold is
proved. An application to symbolic calculus of pseudo-differential operators is sketched.

The aim of this paper is to give a version of Taylor formula for sections
of a vector bundle over a manifold as well as to sketch an application of this
formula in the theory of pseudo-differential operators (do’s) on a manifold.

The basic idea here is HGrmander’s characterization of a y¥do as a
Fourier integral type operator with a linear phase function. A linear phase
function is a substitute of a linear function and it may be used to obtain an
asymptotic formula similar to Taylor’s formula in a linear space ([5]). Such a
Taylor type formula may be used to construct a symbolic calculus of ydo’s,
i.e, a homomorphism of the ydo algebra to an algebra of functions on the
cotangent bundle. Widom proved ([4], [5]) that all the properties of the
linear phase function, essential in Ydo theory may be formulated in terms of
fixed linear connections on the manifold and on the vector bundles between
which the operators are acting.

Drager ([1]) showed that any linear connection gives rise to a phase
function, roughly speaking, by inversion of the exponential map of the
connection.

In this paper a construction of a Taylor formula is given for the Drager
linear phase function following Widom. This formula is then applied to
derive a formula for the symbol of superposition of ydo’s.

Let M be a paracompact C*-manifold with a fixed symmetric linear
connection given by a covariant derivative F on the tangent bundle TM.

Such a connection determines on M the geodesics, the normal coordi-
nates, and the parallel translation ([2]).

An open set Oy < M x M containing the diagonal is called a symmetric
convex normal (shortly scn) neighbourhood of the diagonal provided

(1) (x, y)e Oyp implies (y, x)e Oy (symmetry).
(i) If (x, y) = Oy, then there exists a unique geodesic y, , joining x to y
in Oy, in particular y, ,(t) =y, (1 —1), te[0, 1] (geodesic convexity).
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(i) The mapping W(:, x): y—7y,,(00e T, M defines (normal) coordi-
nates in Oy (x) = {y: (x, y) €0y (normality).

THeoreM O (Drager [17]). For any manifold with a linear connection there
exists a scn neighbourhood of the diagonal.

The proof can be easily deduced from the standard construction of the
normal coordinates.

In the following O, will be a fixed scn neighbourhood of the diagonal.
We also fix a function ye C*®(M x M) with support in Oy, equal to 1 in
some neighbourhood of the diagonal and satisfying x(x, y) = x(y, x).

The function W: O, — TM appearing in the definition of O, is charac-
terized by the conditions

Wy, x) =75, e T M,

Yxyi [0, 11 =2M, (00 =x, p,()=y, V;3=0.
Lemma 1.
W (1xy (E1)s Txy(to)) = (¢4 —1o) Txrey (to) W(y, x)),
to, t, €[0, 1],
where t, , means the parallel translation T.M — T, M along the geodesic v, ..

Proof. Since 0O, is geodesically convex, 7y,,(1—-t)=7y,,(t) and
'}jx.y(l) = —‘yyx(o) = - W(X, )’)
Thus

W(x9 J’) = ’)}y,x(o) = —'}}x,y(l) = —‘rx,y(‘)}x,y(o)) = _tx,y(w(y) x))-
Let X = A)’.}t.y(to)s i = .YI,y(tl)a Lo <Iy. Then
}'f,f(t) = '))x,y (t0+t(tl ~IO))'
Hence

[ —1to

W(j;’ i') = '}.’E,i(o) = (tl _to) .}.’x,y(to) = ‘)jx,y(l)a

0

where ¥, ,(t) = y.,(tot). But
';"x.y(l) = ix.yx'y(l)(‘)j’x,y (O)) = Tx.i(lo ?x.y (0)) = IO Tx.iw(y’ X)
and SO W(J.’;a i") = (tl _tO)rx,i W(y’ X). L

Now, let E be a fixed vector bundle over M, with a fixed linear
connection. The corresponding covariant derivative will be denoted by V. As
usual, I'(E) denotes the space of C®-sections of E.
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Lemma 2. If y is a geodesic and ue I'(E), then
P uyk (1) = Voyu = (V/dt) (uovy),
where V/dt denotes the covariant derivative along y and
) =70 ®...®7(t) (k-fold tensor product).

Proof. The second equality being the definition of V/dt, we only have
to prove the first. This may be done by induction on k. According to the
definition of the k-th covariant derivative we have

Peud (1) = V s (P L 10)=F P u((0) ®... ® Vg7 ® ... ® (1))
=V (V7 ui* "1 (0)
since V;7 =0 for y a geodesic. m
Lemma 3. Define for uerl (E)
W (Y) = Tpy Vu(x) W (y, x),  yeOy(x),

where W (y, x) = W(y, x) ®... ® W(y, x) (k-fold product). Let (x, y)e Oy be
fixed and let y =y, , be the geodesic joining x to y. Then

%

Y

(k=D!

k! _
. _{ o (Pru(x) Wy, x))  for 1<k,
(0 %k —
0 for | > k.

Proof. By Lemma 1
Uy ('}’ (f)) =t Tx,y(l)(Vk u(x)- W(y, x)) = Ty 00 Uk (V)

The function t+>1
on it,
Hence by Lemma 2

V;u) i, = (V/dt) i, oy = (d/dr)' (") Ty Ui ()

sy Uk (V) is a parallel section along y and so F/dt vanishes

k! -
= {(k=1I)!
0, I>k. m

lTy,y(t) ﬁk(_}’), l < k,

CoOROLLARY 1.
poa k! Pioyu for 1=k,
0T 0 for 1 #k.
Remark 1. Since W(y, x) = j,,(0), we have by Lemma 2
Pu-Wr(y, x) = Piyn u.
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In the following SF* will denote the superposition of the k-th covariant
derivative with the full symmetrization.’

THEOREM 1. Let ueI'(E), x, ye M and define

ko
re(y) =u()—x(x, y) Zomrx.y(V’”u(X)'W"'(y, x)).

Then SV'r,(x) =0 for I <k.

Proof. It is sufficient to show that F'r,(x) vanishes for all tangent I-
vectors of the form

X®...®X (lHold product), Xe T, M.
Let X =7,,(0) (any vector eX can be written in such a way for ¢ small
enough).

By Lemma 2 we have to prove that Fyr,(x) = 0, and this follows from
Corollary 1:

ko
Pre(x) = Pru(x)—x(x, x) V‘x( Y Wak)(x)
N m=0 .
=Pu(x)—V,u(x)=0 for I<k.

Remark 2. It is easy to see that the vanishing of SF'r,(x) for I <k is
equivalent to the vanishing of the partial derivatives of r, up to order k.

CoroLLARY 2 (a semi-global Taylor formula).

ko
u(y) = x(x, ) Y. ] T, (P u(x) W™(y, x))+r.(y)
m=0 )

with SV'r.(x) =0 for I <k.

Now, following Widom ([1], [4], [5]) we will give an application of the
Taylor formula to the symbolic calculus of yydo. We will be interested mainly
in obtaining a formula for the symbol of the superposition of two operators.
Our calculations will be purely formal. All the details can be found in the
papers cited above.

We also follow Shubin’s ([3]) notation and termunology for the ydo
theory.
Let us define-

n: Oy — M, m(x,y)=y,
p: i3 T*M—R, @y, x, =W, x), EeT*M,
St Om(x) = E, s,(y)=1,,e for eck,.

Let A: I'(E)— I'(F) be a ydo (E and F are vector bundles over M).
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DEerINITION. The  symbol of A is the mapping o(4): T*M
— L(n*E, n*F), n:. T*M — M being the canonical projection, defined as
follows:

a(A)(x, &)e = A(x (-, x)s.(-) =) (x),
xeM, (e T M, ecE, = (n* E),.
It can be proved ([4]) (or taken for a definition) that if 4 has order
< m, then o(A)eS™(T* M, L(E, F)) and that the correspondence A4 +—g(A)

provides an isomorphism ¥YDO™/¥YDO™ ® —+8™/S™* independent of the
choice of y.

In the following, equality in S$™/S™ * will be denoted by =.

For a fixed xe M, o(A4)] T*M is a smooth mapping of linear spaces
T*M — L(E,, F,). The k-th Fréchet derivative of this mapping at (e T* M
will be denoted by D*o(A4)(x, &). D*o(A)(x, ) is a symmetric k-linear
mapping of T*M to L(E,, F,) and will be treated as an element of
®*T,M ® L(E,, F,), where ® denotes the symmetric tensor product. Thus
D*c(A) belongs to ®*TM ® L(E, F) and it can be contracted with
V*u, ue I'(E); the result of such a contraction, denoted by D*a(4)- V*y,
belongs to I'(F). From the definition of the symbol it follows easily that

Do (A)(x, e = A(x(-, x)s. (1) €05 WE(, x))(x).
LEMMA 4. Let ue'(E), he C*(M xM), hy = 3. Then

® ;—k
. 0.8, (. — v
A(h(-, x)e u(-))(x) = kzo T D*a(A) P u(x).
Proof. Using the Taylor formula we get
A(h(, x) @29 u () (x)

= Zkl!A(h(-, x)x(:, x)E°0 1, (Pu(x) - W, x)))(x)

Z D"(A (x (s )=, o Pru(x))(x)

Z—D"G(A)(x E M u(x). »

The next important lemma is taken from Drager ([1]); its proof is easy.

LemMma 5 (Drager [1]). Let x = (x4, ..., X,) be a normal map at x,, let
ecE, , u(x) =1yx€ and fe C*(M). Then

0 &
SV"(fu)(xO)(x ®..® )=6x,-1...f6 (xo)e.

8x,~k iy
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LeEmMMA 6 (Widom [5]). Let ye C* (M), xe M, dy(x) # 0, ecE,. Then

eI Ay ( x) €V s, ())(x) = o (A) (dy (x))+

.k—(ml + ...+mk)

+

Myseen

D™ T MG (A dY ()P Y () ® ... @ P Y (x)e.

2 52 klm !t m,]
Proof. By the Taylor formula
YO =Y ) +1e, (Y- WY, ))+¥,(y, x)  for yeOy(x)
with

0 k<1,

Vs (909 = {V"‘dt(x) k>1.

Writing & = dy (x) we get

@y, x, &) =dy (x) W(y, x) = 1., (dy W(y, ) = 7, , (WY W(y, x)),
e A(x (-, X)€%V s, ()(x) = A(x(, x) €229 1T, ())(x)

@O ;m

= T Do (A, 9 s, ()00
m=0 :

it I i WX

= Y —D"o(A)(x, O8I (e"" s, () (x).
m=0 m.

The last equality follows from the symmetry of D™o(A)(x, £). To compute

S V’"(eiwl("x) s.("))(x) we use the power series of exp, Lemma 5 and Leibniz
formula.

We get
. o ck
S e s, ()X = ¥ %SV"'(VJ';(-, x) se (*))(x)
k=0K:
i*m!

= Y ST 600 @ @ST L (L (e

ik

- m! 1 S & my
= y T “mk!sv’" Y(x)®... SV ™y (x)e

1--

ik

m!

= y ~'——'—TS(Vm1¢(x)®...®Vm“W(x))e.

myt o rm=m KImy Loy !
my...m22

Substituting the last formula into the previous one and using the symmetry

of D™ (A)(x, £) we obtain the required result. m
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Let A: I'(E)— I'(F), B: I'(F)—» I'(G) be properly supported ydo’s.
Then the superposition BA: I'(E) — I'(G) is defined.

THEOREM 2.

p-kgt .. thptmy+. .. +mp

Dk0+...+kpa_(B)(x, £) x

yo. p;zp!ko!...kp!ml!...mp!
kiveonkp21

ko-p=0

x POD™ T e g (A)(x, VT o, X, () ® ... ® VP P (-, x, &)(x),

o(BA)x, &= ¥
Tk

where V*D"a(A)(x, &) = V*D™a(A)(de (-, x, &))(x).
Proof Let hy =y, xeM, (e T¥M, ecE,. By Lemma 4 we have
a(BA)(x, &)e = BA(x (-, x) €% s,(-))(x)
= B.(h(z, M0 4, (1(y, X) €705, () (@) €7E9) (1)
= B, (h(z, x)u(z, x, &) e*=*9)(x)
=3 L Do) O P uC, x, O,
=0 k!
where
u(z, X, §) = € WO A (y (-, ) EDs, ())(2)
= A(x (-, x)loC=d-eExd s ())(z),
Now we may use Lemma 6 with
vy =el, x, d—0lz x, §).
Then

dy(2) =do(-, x,8)(z), SV™"Y(z)=SV"e(, x, {)(2),
hence

u(z, x, &) = a(A)(de(, x, &)(z)) e+

p—(my + ...+mp)
4 my +

+ Mg (A)(de (- x, &))(2) x

ml,....mpk 2 p! ml ! oo mp!
xSV™ (-, x, )2 ®... SV ™ p(, x, &)(2)e.
Next we apply Leibniz formula for the symmetric covariant derivative

r!

SV(u, ®...Qu)= Y SViu, ®...08Sv"u,

! !
,_1+m+,1=,r1 ....r,.
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to obtain

p—(kg+...+k

+m1+...+m
!

P P

o(BA)(x, &e=Y D o7 kP g (B)(x, &) x

plko! .. kytm .. om,!
xSy p Mg (A)(x, ESPISF™ o(-, x, H(0) Q...
L. RSV SV o (-, x, &) (x)e,

where SV*D™g(A) = SV*D™a(A)(do(, x, £))(x).
The symmetry of the tensors yields the asserted formula. m

my +...

Remark 3. One may prove easily that (-, x, &)(x) only depends
upon ¢ and the curvature tensor ([5]).
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