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AN IMPROPER CRAMER-RAO LOWER BOUND

1. Introduction. This. paper is concerned with the original form of the
Cramer-Rao inequality. This is only one among many possible inequalities
(see Section 3.2 of [1] for a survey and references). Let (%, #, y) be an
ai‘Bitrary measure space with u sigma-finite. Let X be a random variable
(\?-V.) taking values in & with probability distribution P,(dx) = fp(x)u(dx) for
¥eq and Ge @, whére'© is'a known interval of the real line. In the sequel it
5 assumed that’ # is the n-dimensional Euclidean space (n = 1) and # is the
Borel field on .

Suppose that t is a real-valued estimable function on @, not identically
Constant, and f(X) is an estimator of 7(f). Under certain regularity
asumptions (see [3]) we have

! : . )
D E[r(X)—(O)° > B*O)+ [ (6)+ B OF/Vary 55 logfs (X),
Where the right-hand side depends on the estimator ¢ through the bias B(G)
= Eg(t(X))—1(0). Clearly, for any:§, ¢ © and ¢ > 0 there exists an estimator
! such that the risk is determined by

R(t, 0,) = Ey, [t(X)~1(6)]1* h(8y) <&

for 5 given weight function h: @ — (0, o). However, if & = (9, B), then it is
U0t a trivial problem to prove that for an atbitrary:e > O either there exists
A estimator the risk of which, for.example in 0, in the sense of the limit, is

Smaller than ¢ or it is impossible. Theorem 1 shows that if the limit limt(6)
. S
Sxists and is equal to 0 or + oo, thén, under some additional assumptions, it:

1 impOSSi}bl__C. In Theorem 2 a non-trivial lower bound is given for any
*gular estimator. It should be emphasized that this bound does not depend
On the estimadtor and is ‘thé' best of all possible to be obtairied by the
Tamer-Rao inequality. In.,the;jsequel.this bound .is called the improper
Cramer-Rao lower bound (shortly, ICRB) in 8 (or 8).
It is easy to see that ICRB can be useful in proving minimaxity. In fact,
Xample 3 from Section, 4 shows that proofs are then very simple, even in
€ case of not exponentially distributed estimators.
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In general, ICRB is smaller than the trivial lower bound in 0 (or 9
corresponding to the urnbiased version of the Cramer—Rao inequality.
However, these two bounds are equal to each other in some situations, for
example in the case of estimating the mean for the normal distribution; the
equality

lim t2(0) h(0) = o
08
is a sufficient condition under which both bounds coincide at the point 8.

Theorem 3 gives an admissible bound for the class of regular estimators
and can be easily adopted for proving admissibility (see Theorem 5). It is
related ‘to the result of Ibragimov and Has'minskii [2] for unbiased
estimators.

2. Preliminary lemmas. First we prove the following extension of the de
L’Héspital rule: |
. LemMma 1. Let D =(a, b)\ |x,!, where x, is adherent to (a, b), and
assume that f, g: D— R are differentiable. If g'(x) # O for every xcD and

lim f(x) = lim g(x)=0, +x or —o0,

x-*xo x-'xo
then
(2 lim inff—,(ﬁ < liminfo—) < lim supj—(i)- < lim supf—,(ﬁ.
x=xg §(X) " xaxg X)) T xoxy g(x) x-xg G (X)

Proof. Consider the case

lim f(x) = lim g(x)=.0.

B V4 X —=Xp

Let us define f(xo) = g(xo) = 0. Thus, by the Cauchy theorem, for any xeD
we have

f6) _f~fx0) _f')
9(x) gx)—g(xo) g’

where §=x0+9(x—xo), 0 <38 <1. Hence | —Xol <|x—xo| and for any
0 > 0 we obtain

POy 15 o O 0 )

sup : = =7 : .
ix-x(}l)SJQ (%) 1x=~xpl <3 g(x) Ix~xgl <sg(x) g |x-xgl <4 G (x)

Taking 6 — 0, we complete the proof of this case.
Now, let

lim f(x)= lim g(x)=0 and Ijmsup&= C
X =xq x—Xx0 x—xq g (X)
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1° Suppose that C = 0. We prove that

Le.t Xo€(a, b) (in the other case the proof ‘is similar). Then for any ¢ > O there

€xists a neighbourhood U = (xo—d4, xo+ 4) of x, such that for any xe U,

X # x5, we have

3y g(x)>0 and MG (x)
7@

By the identity

[ _f) +f(x)—f(x)( g(i))
9 g g-g@®\ g,

and by the Cauchy theorem, for x,-xeU we obtain

@) foy _f&) f (f)( g(i))
g(x)  g(x g(&f) g(x))’

Where |x—¢| < |x—X]. Since lim g(x) = o0, by (3) and (4) there exists 6 > 0
X"’x

Such that f(x)/g(x) < & for all xe(xo—é Xxq+9). Hence

limsup f (x)/g(x) € 0

x=x0

2° Suppose that |C| < co. Let us define f;(x) = Cg(x). Since
hmsupfl,( )-—11msup(f( ") o )

,t—"xo ( ) x*_rxo ( )
from part 1° it follows that

hmsupfl() lims p(f((; C)s;O.

x=xg 9(X)  xoxp

This completes the proof of thls part.

3° Suppose that |C} = oo. In the case C = oo the assertion
f(x) S (x)
limsup ~— & limsup™-—
| xoxg §(X)  xoxp G (X)
18 obvious. If C = — oo, then
fim L8 _

x>xg g (X)
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but this contradicts the assumption
lim f(x) =lm g(x) =
x—+xQ x—=x0
Substituting — f and —g for f and g, respectively, in 1°~3° we can prove the
last inequality in (2) also for the case

im f(x) = lim g(x) = —c0.

x -'xo X "'xo

It is easy to see that one can prove the first inequality in (2) analogously
as the last one.

Remark 1. Under the assumptions of Lemma 1 suppose that
S (x)/g'(x) 2 f(x)/g(x) on D. Then

liminf /' (x)/g’' (x) = liminf £ (x)/g (x).

X=x0 X=*X0
On the other hand, if f(x)/g(x)}=f'(%)/g' (%) on D, then
lim sup'f (x)/g (x) = limsup f* (x)/g'(x).

X=X x=xq

Let 'us notice that by defining new functions f; (x) = f(1/x) and g, ()
= g(1/x) one can extend Lemma 1 to the following

LEmma 2. Let f, g: (a, o0)— R be differentiable functions such that
g'(x) # 0 for every x > a and

lim f(x) = lim g(x) =0, +0 or —oo.

Then
09 1) i s 19
5 < lim —
©) liminf 2205 < limibe = < limsup
<lmue G i

The following simple example shows that in general the first and last
inequalities in (2) and (5) cannot be changed to egquality.

Example 1. Let f(x) = x—x2sin1/x and g(x) = x for xe(0, 1). Then
there exists

fﬂf (x)/g(x) = 1

but liminf f'(x)/g’(x) =0 while
x—0
f®_,

limsup ——
mp g'(x)
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Now -we investigate some limit properties of non-linear differential
inequalities of the first order.

Let a, b and y be real functions defined on J, the interval of reals, such
that b(x) > a(x) > 0 for all xeJ, and y'is"differentiable on J. Consider the
following differential inequality:

6) a(x)b(x)7! 2 y?(x)x7 2 +a(x}[b ()~ a1 [1+y (0]

LemMa 3. Suppose -that the real function yesCl ) sansﬁes (6) on the
interval of reals J and x* is a point adherent to J. If x*e{—0, 0, oo‘ -and
there exists

lim a(x)/b(x),

x-rx*

then there exists a sequence {x,} in J such that x,— x* and

)} im y'(x,) = lim y(xp)/x, = —lim.a(x)/b(x,),
(M) Lim a(x)/b(x) = lim {y* (x)/x}+a(x).[b(x)—a(x)]™ ' [1+y'(x)]*}.

If, additionally, there exist
Em b(x) =00 and lim y(x)=

x—x* x—x*

then
(iii) lim a(x,,) = lim {y?(x,)/x3 b(x)+a(x,) [1+ (x,)]*}.

n-*o B Amst o

Proof. One can find the idea of this proof in Example 8.4 of [4]. First
We prove the assertions (i) and (ii).

I. Consider the case x* = 0. From (6) it follows that

y*(x) € xZa(x)b(x)" ! < x?

Thus
lim y(x) =
and by Lemma 1 we have
v) liminf y'(x) < liminf y(x)/x < limsup y(x)/x

< limsup y' (x).

x—+x*

Suppose that
liminf y'(x) < limsup y'(x).

x—+x* x—x*
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Since.y’ is continuous on J, there exists a sequence {x,} such that x, — x*
and

8 Y (x,) = y(:c,;)yx,r forn=1,2,...
Let us notice that
9 : alb < Zz+a(b —a)~ (1 +Z)2

for any b > a > 0 and for all Z eR Moreover, the equality in (9) holds if and
~only if Z = —a/b. Thus from (6),, (8).and (9) it follows that
y (xn) = y(xn)/xn = _'a(xn)/b (xn)

and the equality in (6) holds for the sequence {x,}. Taking n— oo, we
complete the proof of (i) and (ii) in this case.
Suppose that

liminf y'(x) = limsup y'(x).

x - x% x—x*

Then from (7) it follows ‘that the hrmts of both sides of (8) exist for ‘any
sequence and

(10) lim y'(x) = lim y(x)/x.

Cox—x* x—x*

Observe that (6) can be transformed as follows:

(1) a@b(9)™! > y*(W)x 2 +a([b(x)—a()] " [1+y()x~ T+
+a()[b()=a()]™ " [y (D —y() x~ 112+
+2[ ()~ y(x?x“][1+y(x)x 1}

From (10) and (11) it follows that

(12)

lim a(x)b(x)"" > lim {y*(x)x™*+a()[b(x)—a(x)] ' [1+y()x~'1?}.
On the other hand, (9) lmplies‘
(13)

lim a(x)b(x)™" < lim {y*(x)x™ 2+ a(x) [b(x)—ab)] ™ [1+y(x) x~1]?}.

Thus the assertions (i) and i) follow from (12) and (13).
II. Let us consider the case x* = . From (6) we obtain

(14) -/ 1—a(x)/b(x) <y(x) —1+\/l—a(x)/b(x);

If
lim:a(x)/b(x) > 0,

x—=x
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then by (14) we have

lim y(x) = — o0

and the proof is similar to that of the previous case. If

lim a(x)/b(x) =0,

x—x*

then

lim y(x)/x =0

x—x*

by (6). 1t is easy to see that (14) implies y'(x) €0 as well. If

lim y(x) = —c0,

x—x®

then the previous considerations may be applied. Otherwise, the function y is
on-increasing and bounded from below, and therefore it has a finite limit.
Owever, this implies that | |

lim y(x) =0

x—x"

and the assertions hold.

III. The case x* = —oo can be proved by analogy to case II |
Now we prove the assertion (iii). Let us notice that (6} is equivalent to

b
a(x) = yz(x)x“zb(x)+agf—g—(6a(x)[l+y’(x)]".

Since

lim a{x) <oc and lim b(x) = oo,

x—=x* x-xt

ffom (i) and the above inequality it follows that

lim y(x,)/x, = lim y'(x,) =0

n—>o0 n—roo

and

lim a(x,) = limsup [y*(x,) x, 2b(x,)]+ lim a(x,).

n->y n—=x n=%

Hence there exists

lim [y*(x,)x, 2b(x,)] =0

n—ao

nd (iii) holds. This completes the proof of Lemma 3.
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Lemma 4. Suppose that the real function yeC(J) satisfies (6) on the
interval J = (x, ). If J =(—o0, 0) or (0, o) and there exist

lim a(x)/b(x) = lim a(x)/b(x),

X X% _
then
(1) y(x) = —Cx for all xel,
where

C'= lim a(x)/b(x);

(1) a(x)/b(x) = y*(x)x 2 +a(x)[b (X)—a(X)]"'[1+y (x)}* for all xed.

Proof. Let us notice that (6).implies y'(x) < y(x}x~! for every xe/s
because otherwise by the inequalities

02y (x)>yx)x™! > =~ Ja(x)/b(x) = —1

it follows from (6) that
Y ()x" +a(x) [b(x)—a(x)] "' [1 +y (%))
>y2(x)x" 2 +a(x)[b(x)—a(x)] ! [1 +y(x)x7 1% > a(x)/b(x),

which contradicts (6). Therefore, y(x)x~! is a monotonic function, since

ED}(X)X"] = [V (x)—yx)/x]x"1.
Assuming that
im a(x)/b(x) = lim a(x)/b(x) = C

X=X x5

and applying Lemma 3 we obtain

lim y(x)/x = lim y(x)/x = —C.

X=X X=X )
Hence the function y(x)x~!'is constant for xe(x, X) and y(x) = —Cx. Then
the assertion (ii) holds as well.

3. Improper Cramer—Rao lower bounds. Let i denote the Lebesgué
measure on ©. The following regularity conditions insure the existence of the
Cramer-Rao lower bound (1) (see [3]):

(a) @ is an interval which may be finite or infinite; ,

(b) the set M = {(x, O)e ¥ x @: (/00) log f3(x) exists] belongs to (4 x B)
and on M the function (0/80)logf,(x) is (# x #)-measurable:

(©) 0 < Var,[(9/00)log fo(X)] < c_ae. [A]; _

(@) [ fo(x)du(x) is differentiable with respect to 6 under the integral sigP
ae. [2]:
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. (@) Eg(t(X)) = [ t(x)fa(x)du(x) is continuously differentiable under the
‘[megral sign a.e. [4] and the statistic t(x) is not equal to some constant a.e.
Hl.

THEOREM 1. Suppose that the parameter space @ contains a subset @* on
Which 7 is q diffeomorphism, the conditions (a)(e) are satisfied and 6* is a point

adherent to @* such that lim t(0) exists and is equal to 0 or +oc. If there
06"

exists a function ¥(0) sich thar 0 < r(0) <t2(0)h(6) on ©* and the limits
ah,...»n; >(0)h(6) and lim r(0) < o exist, and

) . @—0* e
B o> lm [POROrO - 1EOROF 107 > 1,
Wftefe -

0
I1(6) = Var, [_E‘H(; logfo(X)],

g:en there exists no regular (in the sense of condition (e)) estimator t(X) such
af ’

limsup R(t, ) < lim r(6).
a-6 8-6" '

Proof Let us notice that if

lim r(6) = 0,
8

b
then the assertion holds. Suppose that lim r(6) # 0 and there exists f(X)
Such that 08

limsup R(z, ) < lim r(0).

0 —8* 0 —+9*

Then there exist ¢, >0 and a set @5- < @* such that
(16) R(t,0) <r(@)—¢, for every ec®,,

and g* j5 adherent to ©@,. Moreover, on the set @, the Cramer-Rao
Inequality

) R(t, 6) > BX(0)h(6)+[x'(6)+ B (O] h(O) (0) "

?;ﬂds’ where B(0) = E,(¢(X))—t(6) is the bias of t. From (15) it follows that
€re exists a set '@, such that 0* is adherent to @, and

{8 OO O~ 11 OO 10 > 1
,"gl‘gvery Be@,. By (16){(18), for every 8e @, N O, the following inequality
ds: '

e ; : TR \2
19 r0)—go > Bl(e)h(e)+r(9)[rz(e)h(e)—r(e)]-1(1+%’-:—) t2(0) h(0).
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Dividing (19) by t2(6) h(0), we obtain

r(B)—f:o

GO 2ewe

'\ 2
= B*(0)t(0)" 2 +r (@) [t*(O) h(O)—r(O)] 1 (1+%§) .

Thus

| | dB\?

CHr@ 2@ h@)] " = B*(0)t(0)" >+ r(@) [2(O) h(O)—r(0)]* (1 +E)
for every 8@y @,. Since 1 is a diffeomorphism on @* 2 Qom@l, by
Lemma 3 (ii) there exists a sequence |6,} such that ,e@,@, for all ®
6, — 0*(n — o) and the equality in (21) holds in the sense of the limit of the
sequence {0,}. Observe that this contradicts (20) in the case

lim t2(0) h(8) < .

00"
If

lim t2(0) h(0) =

ad

then from (20) we obtain

2 / 2
r(6) -2 > B*(0)2(0)* (¢*(0) h(0) +r(6) - v (0) 1 {6) (1+d3)

(6) h(6)—r(6)

and by Lemma 3 (iii) we have

lim r(6,) = lim {Bz(e.,)r(e,,)*(rz(en)h(e,.))+

n— o0 n—+w

1 (0, (1+f’£(9,.)) }
dt :

which leads to a contradiction, since

lim r(0) < .
06"

This completes the proof of Theorem 1.

Theorem 1 gives sufficient conditions under which the upper limits of
risks of regular estimators are bounded from below at the endpoints of the
parameter space. The best lower bound for this upper limit is given in th¢
following

THEOREM 2. Suppose that the parameter space © contains a subset o* '_‘m
which t is a diffeomorphism, the conditions (a)~(e) are satisfied and 0* is a poirt
adherent to @* such that lim t(0) exists and is equal to 0 or +co. If thert

8-0*
exist _
lim t2(8) h(6)

66"
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and
lim {z2(0) h(9) [(=' @) (8) > 1(O)+1] "} < o0,

0-0*
then for every estimator t(X) (regular in the sense of condition () the
Jollowing inequality holds:

(22) limsup R(, 8) > lim <2 (8) k(O)[(+' (B)/=(0)) “1(®)+1]".
‘ 06

0-0%
In the sequel the right-hand side of (22) is_calléd the improper Cramer—
Rao lower bound (ICRB). |
Proof. Consider the function
| r(6) =2 O hO) [k~ (z'(6)(0) " 1(®)+1]"
for any k (0 <k <1). From the assumptions it follows that there exists

l}m: r.(0). It is easy to ‘check that

lim {[z2(0) h(O)r (0) ' —=11(z' O)x(®) 1(O) ) = k™! > 1.

a—0"

Since r,(0) < ©2(0) h(0) for all 0, the assumptions of Theorem 1 are satisfied,
and therefore

(23) limsup R (¢, 6) = lim r,(6)

0-0° T e

for any regular (in the sense of (¢)) estimator t(X) and for every k (0 <k
<1). Since

(24) re(0) = kz2(0) h(O) [(z' O)/=(9) " 1(B)+k] ™
2 k2O RO O/ 0) 1O+1]7",

from (23) and (24) it follows that
limsup R(t, ) > lim t2(0) h(6) [(z'(O)/(6) *1(®)+1] .

00" 06"

This completes the proof.
Let us notice that

(25) N (LI . ~ 22(0)h (D)
32? (z"(0)/x(8)"21(6) = - (' (0 (0) 21O+ 1"

Provided both limits exist, Clearly, the left-hand side of (25) is the limit value
‘Of the ‘unbiased Cramer—Rao lower bound. It is better (i.e. larger) but holds
for 2 proper subset of all regular estimators only, while ICRB holds for the
Whole class. It is a surprising fact that these bounds differ from each other by
the number 1 in the denominators. |
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Suppose that both bounds are positive. Then the equahty in (25) holds
if and only if

lim 2(0) h(B) =

00"
Example 1. Consider the r.v. X with the gamma distribution
fx, 6) =07 (5) " exp(—6x),.

where f (x, 9) is a density function of X with respect to the Lebesgue measure
and x >0, 0c0O. Suppose that @ is of the form

(a) @ =(0, ),

(b) @ =(0,, x),
and the parameter t(0) = 6~ '.is estimated under the squared error loss with
the welght function h(B) 6*. Then in both cases (a) and (b) ICRB is equal
to (s+1)~ L. |

Example 2. Suppose that the r.v. X is normally distributed N(0, 1)
and 0e6. Let

(a) O = ('_'CD> 00)5

(b) € = (6, ), |
and let the parameter t(#) =6 be estimated under the squared error -loss
with the weight function h(6) = {. Then in both cases (a) and (b) ICRB is
equal to 1. Observe that this is the limit value of the unbiased Cramer-Ra0o
lower bound as well.

Now we consider the case where @ = (0, 6) and where the limits of the
function 7(6) at the endpoints ¢ and  are equal to 0 or +oo0. Then Theorem
2 could be applied for both endpoints separately, but Lemma 4 enables us t0
obtain a more specified result.

THEOREM 3. Suppose ‘that t-is a diffeomorphism on @ = (@, 0), the
conditions (a)-(e) are sutisfied on @, and (@) =(—oc, 0) or 7(@) = (0, «). If
there exist

lim [(v'(0)/(6) " 1(0)+1]"" = lim [(='(0)/x(0) *1(6)+1] ",

69 08
then there exists no regular (in the sense of (e)) estimator t(X) such that
(26) Rt ) < 2OV RO OV ©0) *1O)+1]"

Jor every 0@ with the sharp inequality holding for some 0ec®.

. Proof. Suppose that'there exists an estimator t(X) such that (26) holds
for every 6@ and the sharp inequality holds for some 6,€0. Hence, by the
CramerﬁRao 1nequahty, we' have

RO O/O) " 1O+1]7" > B2Oh(O)+[7(0)+ B OF 1 () h(O-
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Thus, after dividing both sides of this inequality by t2(6)h(6), we obtain
Q@7 (OO 1O+1]"

| > B2(0)t 2 (0)+ [t (O)+ B (0P 171 (0) 7™ 2(0).
Since 1 is a diffeomorphism on @, from (27)”we obtain

2
(25 ﬂrl2Bz(t)1.'"2+a(t)[b('f)——a(‘t)]"l|;1+*‘g—3—(1r—)‘| ,
b(z) dv )
Where g(1) = 1 and b(r(8)) = (¢ (0)/r (9))_-2 1(6)+1. By the assumptions there
exist, and are equal to each other, both limits of a(z)/b(z) at the endpoints of
the interval 7(@). Thus, by Lemma 4, the equality holds in (28) for every
t€1(@) but this is a contradiction to (26) for 1, = 7(0,). N |
Observe that now, comparing with Theorem 2, we are not interested in
4 reasonable bound for the risk at the endpoints of @; therefore, the
assumption on the limits of the expression

2 (0 h(O)[(<' (0= (@) > 1) +1] "

'S omitted in Theorem 3. However, roughly speaking, the assumptions of
Theorem 3 are stronger than other assumptions of Theorem 2.

Remark 1. Theorem 3 concerns the case where 7 is an increasing
function. If 1 is a decreasing function, then, after a change of variables Q =
~0, we can apply it in this case as well.

Let us consider the case t(®) = (— o, o). This case can be treated as a
Combination of two special cases of Theorem 3 and, under an additional
dssumption about the limit of ('c’(())/r(()))_‘z [{0)+1 in 0, the assertion holds.

ragimov and Has'minskii [2] proved a similar result concerning the
admissibility of unbiased estimators. We recall it in a convenient form.

THEOREM (Ib_ragimov and Has'minskii). If 1 iS a d{[feomorphism on O,
UO) = (-0, o), and

n To
(29) [I@dr=ox and | I(@)dr = 0,
o

@

““her(_)

I(t) =E

~ 2
;%logf(X, r)l ,  ToeT(0),

I . . . .
hen there exists no regular (in the sense of (e)) estimator t(X) such that

(30) R(r. 0) < 2 (O) h(O) [(< Oy () > 1(0)] "

for Cery le @ with the shdrp inequality holding for some 0 @.
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Clearly, the right-hand side of (30) is greater than the corresponding one
of (26). Observe that (29) implies

[ O/r®) 1] ' =0 for 1(6)» —co and t(6)— co.

This is an additional assumption, when compared with' Theorem 3, which
makes the assertion stronger. However, ICRB is the same as the
corresponding bound for unbiased estlmators

4. Applications. The following result is an immediate consequence Of
Theorem 2 and the definition of a minimax estimator.

- THEOREM 4. Suppose that the assumptions of Theorem 2 are fulfilled and
t(X) is an estimator such that sup R(t, 0) is equal to ICRB. Then t is
] .
minimax.
Example 1. Let us consider Example 1 from Section 3. Since ¢(X)
=(s+1)"'X gives "

sup R(t, 0) = (s+1)" 1,
(3

by Theorem 4 the estimator ¢ is a minimax estimator of 1(0) 0*‘ far
96(0 o) or 9&(05. ). E

‘Example 2. Consider Example 2 from Section 3 and t(X) = X as a0
estimator of t(6) =#@. Since

sup R(1, 0) = 1,
[}

by Theorem 4 ‘the estimator ¢t is a minimax estlmator for © ~—( 00, 00) Of
= (04, 00). Observe that ¢ is unbiased.

Although the Cramer-Rao mequallty is a basis for ICRB, Theorem ¥
may be applied also for not exponentially distributed estimiators. Moreovers
the next example shows that the extension of the underlying distributions
cannot be reduced to the Joshi modification of the exponential family (s€¢

(3.
We start with the following
PROPOSITION. Let
Ep X =nm 1(0), EyX?=m, %(6)—m, ,1';(9),

to=inf1(0) >0 and my > —10(my—mdmy?
e

If © contains a sequence 16 _such that 1(0,-) — X (ji — x) and

lim tZ(B)h(B)msuprz(B)h(B)

i—o
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then m,/m, X + b, where

To[1 “m%/mz—\/(l —mf/mz)2+m§/m2 —Mm3/To ]

<b < to[1=m/my+ /(1 — m2jm? +mifmy—msty 1,

is.a minimax estimator of () in the class & = {aX +b; a, be R} under the
Squared error loss with the weight function h, and the minimax value is equal to
K(l*mf/mz). Moreover, if additionally b > 1—mji/m,, then m /my, X +b is
admissible in the class ¥ as well. |

Since the proof of the Proposition is simple. but rather long, it is

Omitted. |

' Example 3. Suppose that the r.v. X from Example 1 (a) of Section 3 is
disturbed by a random error U, the distribution of which, in general,
depends on 6 and satisfies the régularity conditions (a)j{e). From the
Proposition it follows that t(X)=(s+1)"' X+60;'(s+1)~! is a minimax
and admissible estimator in the class of linear estimators, and the minimax
Value is equal to (s+1)~1. A statistician observes ¥ = X + U instead of X
and would use 1(Y) = (s+1)~' Y405 ' (s+1)"! rather than t(X). Assume, for
Simplicity, that U and Y are independent and E,U > 0. Clearly, Y is not
CXponentially distributed in this case and

R(t(Y), 0) = R(t(X), 0)+0*(s+ 1) ?E, U*+
| +20%/(s+1)* [1/0,— (s +2)/0]1 E, U.
If (i) B,U? <052 and (i) Iy(0)8%— 0 (80— 0), where I,(0) is the Fisher
Information corresponding to U, then, by Theorem 4, t(Y)=(s+1)"'Y

+05'(s+1)"! is a minimax estimator of t(6) =8~*. In fact, (i) implies
S‘;P R(t(Z), 0) =(s+1)"! and from (ii) it follows that ICRB for the statistic

Y is equal to (s+1)" 1.

The following result is implied by Theorem 3 and the definition of
admissible estimators.

THEOREM 5. Suppose that the assumptions of Theorem 3 are fulfilled and
1X) is an estimator such that

(31) R(, 0) =2 @) hO[( O 0) > 10)+1]".

Then t is admissible.

Example 4. Consider Example 1 from Section 3 for #e(0, c©). It is
®asy to check that the right-hand side of (31) is equal to (s+1)'. Since the
sk of t(X)=(s+1)"'X is equal to (s+1)”!, the estimator ¢ is an
admissible (and minimax, of course) estimator of t(6) =0~
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