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On superposition of quasianalytic functions

by W. PLESNIAK (Krakéw)

Let F be a compact set in the space C" of n complex variable-
2 = (21y ...y 2,). Let €(F) denote the Banach algebra of all complex funcs
tions continuous in F with the norm

Iflle = magilf(z)l, fe€(B).

Denote by &,(f, E) the »-th measure of the best Cebyéev apPproxi-
matlon to fe ¥(E) on E by polynomials in z, i.e.

¢, (f, By = inf||f - Pz,

where inf is spread over all the polynomials P, of degree < ». Let #(E)
denote the subset of ¥(F) consisting of all the functions satisfying the
following condition:

liminfV &, (f, E) < 1.

The functions of #(E) are called quasianalytic on E in Bernstein’s
sense. In the case n =1, if £ is a compact interval of the real axis R,
the basic properties of functions fe Z(¥) may be found in [1] or [6].
The term ¢‘‘quasianalytic’” arises from the following identity principle
given by Bernstein:

If E and I are compact intervals in R and I = E, then every funclion
fe B(E) vanishing on I is identically equal to zero.

In the case » > 1, a generalization of this result has been given in [4].
Let {»,} be an increasing sequence of positive integers. Denote by
[{»:}] the set of all increasing sequences {x,} of positive integers such
that 1/M < u./v, < M for k> 1, M being a positive constant dependent
on {u;}. Denote by #(EZ, {v,}) the set of all functions fe #(F) such that

hml/é”,k(f, E)<1

k=00

and define Z(H, [{»}]) = {fe Z(F, {m}): {pk}é[{vk}]}. One can check
that Z(E, [{».}]) is a ring with respect to the ordinary pointwise addi-
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tion and multiplication of functions. If E satisfies the assumptions of
the identity theorem in [4], then the ring #(E, [{»;}]) is a domain of
integrity.

The main purpose of this paper is to answer in the negative the
following natural question:

(I) Let fe Z(E, [{»}]) and ge Z(f(E), [{»}]). Does this imply that
gofe B(E, [{n}])? |
It follows from a result of Siciak (cf. Lemma 1) that every function ¢
holomorphic in a neighbourhood of a polynomially convex compact set F
in C" is a member of #(F, {»,}) for any {»,}. Hence, in order to answer
question (I) we may consider the following problem:

(II) Let fe Z(E, [{»,}]) and let ¢ be a holomorphic function in a neigh-
bourhood of f(Z). What conditions are necessary and sufficient
for gofe Z(E, [{n}])?

If F is polynomially convex, we give some sufficient condition for
(ITI). It is also a necessary one if ¢ is rational and the extremal function
@ (z, F) (introduced by J. Siciak in [5]) is continuous in ¥ (see Theorem 1).
On the other hand, given fe¢ #Z (¥, [{»;}]), we may always assume that F
is polynomially convex (see Lemma 3). Hence, Counter-examples 1, 2
and 3 give us a negative reply to (I).

Nevertheless, in accordance with Examples 4 and 5, there exist
functions fe B (E, [{»}]) and ge Z(f(E), [{».}]), g(w) s w, such that
gofe B(B, [{n})).

Finally, we note that a simple characterization of essentially quasi-
analytic functions on K (i.e. functions not continuable to holomorphic
functions in any neighbourhood of E) is given by Lemma 2. In the case
n = 1, because of the Montel theorem, that lemma can be formulated
as follows. : '

A complex function f defined and bounded on a compact set E is the
restriction to B of a function F holomorphic in a neighbourhood of the
polynomially convex envelope E of E if and only if there exist polyno-

mials {P,}, an open set U, B = U, and at least two distinct points a,be C
such that

iim”f_Pk”E =0
and

P (U)c C\{a, b}, k=>1.
We start from some lemmas. The first one is a slight modification
of the well-known result of Siciak [5].

LEMMA 1. Let {f,} be a sequence of bounded holomorphic fumctions
in an open set Q2 in C". Write M, = sup|f,.(z)|. Then for every polynomially

e
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convex compact set E, E — (1, there exist positive constants M and g, pe¢ (0, 1),
independent of k and such that

¢ (fr BYS MMyo'y, v21,k>1

Proof. Fix a polynomially convex compact set E, E < 2, and
a number R > 1. It follows from the definition of the polynomial convexity
and from the Borel-Lebesgue theorem that there exist polynomlals
P,,..., P, such that |Pjlz<1 (j =1,...,m) and

EcintLc L = {zeC™: [P;(2)| <R, j=1,...,m}c 2.

Put g, = f,/M,. Applying the Weil integral formula in L, by the
same reasoning as in [5], p. 345, for every g, we find a sequence of poly-
nomials {Q%},-,, deg@* < », such that

gz — ”E Mo’ v>1,

where the constants M and ¢ are independent of k, oe(0,1). Hence
putting R* = M, Q% gives

I fr— Rk”E MM, , v=1,

for ¥ =1,2,... The proof is completed.

Given a compact set F in C*, we shall denote by E the polynomially
convex envelope of F. By Lemma 1 (for f, = f) one can easily prove the
following

LEMMA 2. Let f be a complex function defined and bounded on E.
A necessary and sufficient condition that f be the restriction to E of a function}
holomorphic in a meighbourhood of E is that there exist polynomials {P,}
and an open set U, Ec U, such that

Em”f—Pk”E =0

and the sequence {P,} forms a mormal family in U.

LEMMA 3. Suppose that fe B(E, {»,}). Then there exist a function
fe B(E, {»,}) such that f|z = f.
Proof. Take polynomials {P, }, degP,k < v,, such that

(1) If =P, s < M™%, k>1,

where M and ¢ are constants independent of %, ge (0, 1). Because of (1)
and the triangle inequality, the function f can be expanded into the
series

o0

() &) =P, () + Y [P,,,, ()~ P, ()]

k=1
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convergent umformly in E. By the definition of E series (2) is uniformly
convergent in E to a function f Moreover,

“f“ka”E =”l;k‘(P”l+1_P

oo

5 < Z 1P, — P,z

=) .
<M D (¢4 <
1=k

£

This implies that f e B( E’ {v.}) as asserted.

LEMMA 4. Let E be a compact set in C™ and let F be a jamzly of poly-
nomials satisfying the following conditions:

() If) =m >0, 2z¢ B, fe F,

(ii) there ewists an open set U in C" such that B <= U and f(z) # 0
for ze U, fe #.

Then, for every w > 1 there exists an open set V in C" such that E = V
and

f@ 0l > m, zeV, feF ().

Proof. Fix a number @ > 1 and a point & = (a,, ..., a,)¢ F and put
8 = o~ "". Given a polynomial fe &, we write |

(1) g(z1) = f(21) @35 ..oy 8,) = B(21—ay) ... (31— 1Y),

where the numbers 8, ¢; (j =1, ...,[) may depend on f and on the point
a, 0 <1< degf. By assumption (i) we obtain

m
2 18| =
@) AR vy —
Hence
zlha]_ zl—-a;
= .
(3) 9l > m | A=t

Take & = dist(E, C*\U)/2Vn. By (ii), f(2) £0 for zeP(a, o)
= K(a,, 8) X ... X K(a,, 6), where K (a;, 6) = {2,¢ C: |2, — a,| < 6}. Hence
@, —af > 6 for j =1,...,1. So, setting J, = (1 —0)6 gives

— _ 8
) [T o1 | BT 5% 5 for e K(ay, 8,).
al—a,- @, — 0
Hence by (1) and (3) we obtain
(5) f (215 @2y .0y @) = mB' > M6 for z,¢ K(a,, d,).

(*) If n = 1 and E is connected, this lemma is due to Leja [2]. He proved it
by means of his well-known Polynomial Lemma. Our proof is a direct one.
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By induction, in order to complete the proof it is enough to show
that:

if
(6)  |f(2)] > mo s
for ze K(a;, 6,) X ... X K(ay, 0,) X @y, 1X ... X @y,
then
|(2)] > mgte+Daest
for ze K(a,, 0,) X .. X K(@y,1, 0,) X G oX ... X Gp.

To this end fix a point &% = (b,, ..., b,)e K(a;, 8,) X ... X K(a,, 8,).
Then the polynomial of one variable 2,
9(2ep1) = f*, 21y Fipzy ooy On)

may be written in the form

9(Zp41) = B(Rryp1— ) .. (zk+l —a),

where 8, o; (j =1,...,1) are numbers dependent on f, b* and a,,,, ...
very @y 0 <1< degf. By the same reasoning as in the proof of (5) one
can show that

19 (2ks1)| = moE+ndest  for Zrp1€ K@y, 6,)

independently of the choice of b*e K(a,, 8,)X ... X K(a,, 8,), which
ends the proof of (6). By (5) and (6) we obtain

If(2)| 0% >m  for ze P(a, d,).

Since J, does not depend on the choice of the point ae F and fe %,

we get the assertion of the lemma with V = | intP(a, é,).
acE

LEMMA 5. Let f be a complex function defined and bounded on a compact
set & in C". Let ¢ be a function holomorphic in a meighbourhood £ of the
set F = f(E). If for a sequence of polynomials {P,}

lim||f—Pllzg = 0,

k—o00

then there exist constants M > 0 and K, > 0 such that

|#(f () — ¢(Pe(2))| < M|f(2) = Pr(2)l, 2B, k> k.

Proof. Fix an 8, 0< < dist(F, 9Q). Write M = sup{|p(w)|:
dist (w, F') < é}. By the Schwarz inequality we obtain

lp(w) — @ ()] <3§I—|w—b[ for we K(b, 6/2), beF.
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Hence, by fixing a %, such that | f—P,|lz < 6/2 for k > k, and putting
M =2M|/é, we conclude the proof.

Denote by & the extremal function of a compact set E in C*, i.e.

& (2, E) = sup{sup{|P,(2)"": P, is a polynomial in z = (2y,...,2,)

v2=21

such that degP,<» and |P,/z<1}}, 2z¢C",

introduced by Siciak [5]. We shall often use the following properties of
@D(z, B) (see [b]):

1) b(z,EB)>1, =2eC* and &P(2,E)=1, zekE,
(2) |P(2)| < ||Plg[P(z, E)]%**F, =ze(", for every polynomial P,
3) Dz, B) < (2, F), zeC*, it Fck,

(4) D2, B) = max{PD(z, E;)}, =z2e¢C", for E =E, X ... XEH,.
1<i<n

We add that in the case n = 1 the function @(z, E) is equivalent to
Leja’s extremal function L = L(z, E) (see [3]). This note and properties
(3), (4) give us some criteria for the continuity of ®(z, E), ¥ < 0", ex-
pressed by properties of L.

The results of the previous lemmas enable us to prove the following

THEOREM 1. Let E be a compact set in C". Let fe B(E, [{»,}]) and let ¢
be a holomorphic function in an open set 2 in C such that F = f(F) < L.

1° If E = E and the following condition is satisfied:

CoNDITION (W). There exist polynomials {P, }, degP, < uy, {u}e [{n:}],
a netghbourhood U of E in C* and constants A >0 and k, > 0 such that

@) If =P, lls < Mg"  for k>1,

M and o being constanis independent of -k, oe (0, 1),

(ii) Ppk(U)C Q, k=k,

and

(iii) su£|¢(P,,k(z'))| < A" for k> ky,
ge

then pofe B(E, [{vi}]).
2° If the extremal function @D (2, E) is continuous in E and ¢ 18 a rational
function, then Condition (W) is necessary that g ofe Z(H, [{v.}]).

Proof. 1° By Condition (W) and Lemma 1, for every k > k, there
exist polynomials {R}} such that

(1) ”990Pyk—R;’f“E<M1A#k'QT for p =1,2,...,
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M, and g, being constants independent of %, g, (0, 1). Take an integer !
so large that Ag} < p,. Then, by (1), we obtain

(2) ”¢ O‘Pﬂk lﬂk”E = Ml QTk for k 2 kO'
On the other hdnd by (i) of Condition (W) and Lemma 5, we have
(3) ”‘P of —@poP, |lg< M, 0" k> kq,

where the constant M, does not depend on k. By (2), (3) and the triangle
inequality we get

o Of‘“Rlpk”E My,
where 7 = [max(g, ;)" and M = max(M,, M,). This implies that
g ofe B(E, [{n}]).
2° Suppose that f, pofe Z(H, [{»,}]), where
W, (w) _ a(w—a,) ... (w—a,)
Zig(w) b(w—By) ... (w—B,)’
a Py t=1,...,p,J =1,...,¢4 f;e C\F. By our assumptions there

exist polynomials {P, }, {ka}, where {u;}, {w}e[{n}], degP, <,
degka < wg, and constants M, o independent of %k, ge (0,1), such that

p(w) =

4) If—Pulle< Mg" for k>1,
and
(5) lp of —Qu,lls < Mo  for k>1.

By the definition of #(F, [{»,}]) we may assume that u, = w, = v,
k> 1. It follows from (4) and Lemma 5 that

lp of —@oP, [lg < M,
Hence and by (5), we have
(6) Wy oP, —(Z,0P, )@, lle < M,||Z,0P,, |lgc™.
By (3) and Lemma 5 there exists a constant M, such that
IZg0P, llz< M, for k>1

Hence by (6) and property (2) of the extremal function (2, E)
we obtain

(7) W, (P, (2) — Z,(P, ()@, ()| < My [ (2, B)]™%,

for ze C", where My, = M, M,,r = max(p, ¢+ 1). Take 2 number 7¢ (g, 1).
Since @(z, E) is continuous in F and because of property (1) of @, there
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exists an open set U such that £ c U and o9"(z, E) < n for ze U. Hence
by (7) we get

(8) |Wy (P, (2)) = Zo(P,, (2))Q., (2)| < Myy®  for ze U,
Suppose that Z,(P, (¢)) = 0 for a point Z¢ U. Then P, (¢) = f;, for
a certain joe{l,..., ¢}. Write 6 = min{|e;— f;|}. By (8) we would have
1,3
0< [6] 8 < [b(Bj,— 1) -+ (B, — ap)| = |Wp(B;)| < Man'™.
This is impossible for sufficiently large k. So, we have
9 Zq(Pyk(z)) #0 for 2e U, k= ko = ko(d, D).

This means that (ii) of Condition (W) is satisfied.
It remains to prove (iii). To this end take ¢ = } min{dist(F, ;)} and

write F, = {we O: dist(w, F) < £}. By (4), 1<i<q
P, (2)eF, forzeE, if k>k, = k().
Hence
(10) min|Z,(P,, (2))| > inf|Z,(w)] =m >0 for k> k,,
zel wely

where k, = max(k,, k,). By (9), (10) and Lemma 4 there exists an open
set V such that E<c V< U and

IZq(P?],c (2))|2%k=m  for zeV, k> k,.
Hence, by (4), Lemma 5 and property (2) of @, we obtain
suplp (P, ()] < 1/m [ W0 P, ls[(n/e)" "2 < 4
ge

for k> k., where A is a suitably chosen constant independent of k. The
proof is completed.

Remark. If £ # E, then, in general, Condition (W) is not sufficient
for p ofe Z (B, [{v}])- One can easily come to this conclusion by considering
E ={z2eC: |2| =1}, f(¢) =2 and ¢(w) = 1/w.

Nevertheless, because of Lemma 3, given fe¢ Z(E, [{»}]), we may
always assume that £ = E.

THEOREM 2. Let E and ¢ be the same as in 2° of Theorem 1. If Condition
(W) is satisfied for polynomials {P, }, then it is satisfied for every sequence
of polynomials {Q, } such that {x,}e [{1}], deg@Q,, < ;. and

(1) If =@ lle < Miotk, k=1,

M, and p, being constants independent of k, p e (0, 1).

Proof. We have only to prove (ii) and (iii) of Condition (W) for
{Q.,.}-
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(ii) If 2 = C, the proof is trivial. Assume that C\Q = B # @.
By (1), (i) of Condition (W) for {P, } and the definition of [{x;}] we have

(2) 1Py, — Qulle < Maot®, k>1,

for suitable constants M, and p,, o, e(O, 1), w, = max(u, ). Take
a number 7e(g;,1). Since the extremal function &(z, ) is continuous
in E, there exists an open set V, ¥ < V, such that ¢,2(z, F) < 7 for
zeclV. Hence, by (2) and property (2) of @, we get

Write 2m = dist(F, B). By (i) of Condition (W) for every point
we B we have

[Py, (2) —w| 2> |f(2) —w| — | f(2) — P, (2)| = 2m —Mg" > m >0

for 2¢ F and k> k, = kl(m). Hence, by (ii) of Condition (W), the family
F = {P, —w: we B, k>k, = max(k,, k,)} of polynomials in z satisfies
the assumptions of Lemma 4. So, for every 4 > 1 we can find an open
set V, such that E < V, <« U and

(4) [P, (2) —w| 2% >=m, 2zeV,;, weB, k>k,.

If we take 4 < 1/5, then, by (3) and (4), we get

Q. (2) —w] > |P,, (2) —w| — P, (2) — @, (2)] > mA~*k— M,7" > 0
forzeV, N V,we B, k > ky, where k, is sufficiently large. Thus, @, (V, N V)

c 2 for k> k, as asserted.

(iii) Since the function ¢ is rational, it is enough to apply property (2)
of the extremal function @ and Lemma 4.

Now let £ be a polynomially convex compact set in C (2) and let
fe #(E, [{».}]). Assume that the extremal function @(z, E) is continuous
in E. Comparing Lemma 2 and Theorem 1, by the Montel theorem, gives
the following J

THEOREM 3. If ¢ i8 a rational function with at least two poles lying
in ON\f(E), then ¢ ofe B(E, [{v}]) if and only if there exisis a function f
holomorphic in a meighbourhood of E such that f g =1

We shall now illustrate our results by means of some examples.

COUNTER-EXAMPLE 1. Let F = {2¢(: [2|<1}. Then &(z, E)

= max{|z|, 1} for z¢ C (see [5]). Take a sequence {»,} of positive integers
such that v, /vy > o as k — oo and define

\4

f&) = D))= a>1).

k=1

() In this case it is well known that E = E if and only if the set O\ E is
connected.

8 — Annales Polonici Mathematlel XXVI
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One can easily check that fe Z(Z, {»;}) and f cannot be analytically
continued onto any neighbourhood of E. Let ¢ be a rational function
with at least two poles. Then it follows from Theorem 3 that ¢ of¢ #(E,

{7} ])

COUNTER-EXAMPLE 2. Define E and f as above and set
g(2) = f*(x)— M,

where ||f||z < M. Since Z(E, [{»,}]) is a ring; then ge #(E, [{v,}]). Because
of Theorem 3 it is seen that 1/g¢ Z(E, [{v.}]). '

COUNTER-EXAMPLE 3. Define the sequence {»,} as

1’0—_—1, vk+1=2vk, k?O,

and set
) 0
S COoS
f(m)=2 COPATOCRT  for we B = [—1,1].
Vi
=0

It is known (Bernstein [1], p. 294) that fe #(E, {»,}) and f is not
differentiable in E. Define

g(®) = f(=z)+M,
where ||f]lz < M. We will show that 1/g¢ #(E, [{v,}]). To this end write

k k S —
COSY,arcCoS2 (z+V2—1)1+(z2—V22—1)"
P =M E =M E -
Yk (z) + = ‘Vl. + - 271

It is clear that P, is a polynomial in 2 of degree »,. Moreover,
lg—P, Jlx < 2(1/2)%.

Fix a number r > 1. Since the sequence {v,/v,_,} is increasing, for
|z24+V22—1| = R>r we have

(z-l-l/z"‘—-l)’k+(z— sz—l)”k
> : _
P, ) 5 |
_| M*S (+VE—1y14 e —VE—1) ]
2'Vl
=0
k—1
vk_ —ﬂk vl . —i'l
S BE—E% D Ri+R
2'Vk 21’1

1=0
k-1

RKE—1 \*k—1 Rk k—1\"1-1 R
— : —|M+—+1]>0
(S B o B Sae A0 R

=1
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a8 k> ko = ko(r). Thus, all the zeros of the polynomials {P,} (k> k)
are contained in the ellipse {zeC: |2+ V22—1| <r} with the foci —1
and 1. So, the sequence {P, } does not satisfy (ii) of Condition (W) for
@(w) = 1jw. Since D(z, [—1,1]) = |2+ V22—1| for zeC (see [3]), it is
continuous in C. Hence, by Theorems 1 and 2, 1/g¢ #([ —1, 1], [{»:}])-

ExAMPLE 4. Let E be a compact set in C". If fe Z(F, [{»}]) and ¢
is a polynomial; then ¢ofe Z(H, [{».}]).

ExaMpPLE 5. Let E be a polynomially convex compact set in C* such
that the extremal function @(z, E) is continuous in E. Take an increasing
sequence {».} of positive integers such that », ,/R'* — oo as k — oo for
a certain constant R > 1. Write yu, = [R’*], £t =1,2,... Given an
oe (0,1), we put

g = o' for v, <y <wpyy, E=1.

By the well-known Bernstein theorem (see [6]) there exists a function
fe €(E) such that

Since

limsupV &, (f, E) > lim g""x+171 =1;
y—00 k—>o0
then, in virtue of Lemma 1 (for the case f, = f), the function f cannot

be continued to a holomorphic function onto any neighbourhood of E.

Take polynomials P,k such that

&, (fLB) = f=P,llz, k=>1.

Since ¢&,(f, B)< &,(f, E) for u>v, then feZ(E, {u,}). By the
assumption of continuity of @(z, F) in ¥ we can choose an open set U,
E c U, such that &(2, E) < R for ze U. Then, by property (2) of @,
we have

-P, 7
€k (2)| < AF®, z2eU,
and

-P
o7 k()| < AR*,  ze U,

4 being a positive constant. Hence the sequences P, = P, and Q,,=-P,
(k =1,2,...) satisfy Condition (W) for ¢(w) = e“. Thus, by Theorem 1,

the functions ¢ and ¢/ are members of Z(E, [{u;}])-
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