ANNALES POLONICI MATHEMATICI XXVI (1972)

On superposition of quasianalytic functions

by W. Pleśniak (Kraków)

Let E be a compact set in the space C^n of n complex variable $z = (z_1, \ldots, z_n)$. Let $\mathscr{C}(E)$ denote the Banach algebra of all complex funcs tions continuous in E with the norm

$$\|f\|_E = \max_{z \in E} |f(z)|, \quad f \in \mathscr{C}(E).$$

Denote by $\mathscr{E}_{\nu}(f, E)$ the ν -th measure of the best Čebyšev approximation to $f \in \mathscr{C}(E)$ on E by polynomials in z, i.e.

$$\mathscr{E}_{\nu}(f,E) = \inf \|f - P_{\nu}\|_{E},$$

where inf is spread over all the polynomials P_{ν} of degree $\leq \nu$. Let $\mathscr{B}(E)$ denote the subset of $\mathscr{C}(E)$ consisting of all the functions satisfying the following condition:

$$\liminf_{r\to\infty} \sqrt[r]{\mathscr{E}_r(f,E)} < 1.$$

The functions of $\mathscr{B}(E)$ are called *quasianalytic* on E in Bernstein's sense. In the case n=1, if E is a compact interval of the real axis R, the basic properties of functions $f \in \mathscr{B}(E)$ may be found in [1] or [6]. The term "quasianalytic" arises from the following identity principle given by Bernstein:

If E and I are compact intervals in R and $I \subset E$, then every function $f \in \mathcal{B}(E)$ vanishing on I is identically equal to zero.

In the case $n \ge 1$, a generalization of this result has been given in [4]. Let $\{v_k\}$ be an increasing sequence of positive integers. Denote by $[\{v_k\}]$ the set of all increasing sequences $\{\mu_k\}$ of positive integers such that $1/M < \mu_k/v_k < M$ for $k \ge 1$, M being a positive constant dependent on $\{\mu_k\}$. Denote by $\mathscr{B}(E, \{v_k\})$ the set of all functions $f \in \mathscr{B}(E)$ such that

$$\lim_{k o \infty} \sqrt[r]{\mathscr{E}_{v_k}(f, E)} < 1$$

and define $\mathscr{B}(E, [\{\nu_k\}]) = \{f \in \mathscr{B}(E, \{\mu_k\}): \{\mu_k\} \in [\{\nu_k\}]\}$. One can check that $\mathscr{B}(E, [\{\nu_k\}])$ is a ring with respect to the ordinary pointwise addi-

tion and multiplication of functions. If E satisfies the assumptions of the identity theorem in [4], then the ring $\mathscr{B}(E, [\{\nu_k\}])$ is a domain of integrity.

The main purpose of this paper is to answer in the negative the following natural question:

(I) Let $f \in \mathcal{B}(E, [\{v_k\}])$ and $g \in \mathcal{B}(f(E), [\{v_k\}])$. Does this imply that $g \circ f \in \mathcal{B}(E, [\{v_k\}])$?

It follows from a result of Siciak (cf. Lemma 1) that every function φ holomorphic in a neighbourhood of a polynomially convex compact set F in C^n is a member of $\mathcal{B}(F, \{\nu_k\})$ for any $\{\nu_k\}$. Hence, in order to answer question (I) we may consider the following problem:

(II) Let $f \in \mathcal{B}(E, [\{\nu_k\}])$ and let φ be a holomorphic function in a neighbourhood of f(E). What conditions are necessary and sufficient for $\varphi \circ f \in \mathcal{B}(E, [\{\nu_k\}])$?

If E is polynomially convex, we give some sufficient condition for (II). It is also a necessary one if φ is rational and the extremal function $\Phi(z, E)$ (introduced by J. Siciak in [5]) is continuous in E (see Theorem 1). On the other hand, given $f \in \mathcal{B}(E, [\{v_k\}])$, we may always assume that E is polynomially convex (see Lemma 3). Hence, Counter-examples 1, 2 and 3 give us a negative reply to (I).

Nevertheless, in accordance with Examples 4 and 5, there exist functions $f \in \mathcal{B}(E, [\{v_k\}])$ and $g \in \mathcal{B}(f(E), [\{v_k\}])$, $g(w) \not\equiv w$, such that $g \circ f \in \mathcal{B}(E, [\{v_k\}])$.

Finally, we note that a simple characterization of essentially quasianalytic functions on E (i.e. functions not continuable to holomorphic functions in any neighbourhood of E) is given by Lemma 2. In the case n=1, because of the Montel theorem, that lemma can be formulated as follows.

A complex function f defined and bounded on a compact set E is the restriction to E of a function F holomorphic in a neighbourhood of the polynomially convex envelope \hat{E} of E if and only if there exist polynomials $\{P_k\}$, an open set U, $E \subset U$, and at least two distinct points a, $b \in C$ such that

$$\lim_{k\to\infty} \lVert f - P_k \rVert_E = 0$$

and

$$P_k(U) \subset C \setminus \{a, b\}, \quad k \geqslant 1.$$

We start from some lemmas. The first one is a slight modification of the well-known result of Siciak [5].

LEMMA 1. Let $\{f_k\}$ be a sequence of bounded holomorphic functions in an open set Ω in C^n . Write $M_k = \sup_{z \in \Omega} |f_k(z)|$. Then for every polynomially

convex compact set E, $E \subset \Omega$, there exist positive constants M and ϱ , $\varrho \in (0, 1)$, independent of k and such that

$$\mathscr{E}_{\nu}(f_k, E) \leqslant MM_k \varrho^{\nu}, \quad \nu \geqslant 1, k \geqslant 1.$$

Proof. Fix a polynomially convex compact set E, $E \subset \Omega$, and a number R > 1. It follows from the definition of the polynomial convexity and from the Borel-Lebesgue theorem that there exist polynomials P_1, \ldots, P_m such that $||P_j||_E \leq 1$ $(j = 1, \ldots, m)$ and

$$E \subset \operatorname{int} L \subset L = \{z \in C^n \colon |P_j(z)| \leqslant R, \ j = 1, \ldots, m\} \subset \Omega.$$

Put $g_k = f_k/M_k$. Applying the Weil integral formula in L, by the same reasoning as in [5], p. 345, for every g_k we find a sequence of polynomials $\{Q_r^k\}_{r\geqslant 1}$, $\deg Q_r^k\leqslant \nu$, such that

$$\|g_k - Q_v^k\|_E \leqslant M \varrho^v, \quad v \geqslant 1,$$

where the constants M and ϱ are independent of k, $\varrho \in (0, 1)$. Hence putting $R_{\nu}^{k} = M_{k}Q_{\nu}^{k}$ gives

$$||f_k - R_v^k||_E \leqslant M M_k \varrho^v, \quad v \geqslant 1,$$

for k = 1, 2, ... The proof is completed.

Given a compact set E in C^n , we shall denote by \hat{E} the polynomially convex envelope of E. By Lemma 1 (for $f_k = f$) one can easily prove the following

LEMMA 2. Let f be a complex function defined and bounded on E. A necessary and sufficient condition that f be the restriction to E of a function \tilde{f} holomorphic in a neighbourhood of \hat{E} is that there exist polynomials $\{P_k\}$ and an open set U, $\hat{E} \subset U$, such that

$$\lim_{k\to\infty} \lVert f - P_k \rVert_E = 0$$

and the sequence $\{P_k\}$ forms a normal family in U.

LEMMA 3. Suppose that $f \in \mathcal{B}(E, \{\nu_k\})$. Then there exist a function $\tilde{f} \in \mathcal{B}(\hat{E}, \{\nu_k\})$ such that $\tilde{f}|_E = f$.

Proof. Take polynomials $\{P_{r_k}\}$, $\deg P_{r_k} \leqslant \nu_k$, such that

$$||f-P_{r_k}||_E\leqslant M\varrho^{r_k}, \quad k\geqslant 1,$$

where M and ϱ are constants independent of k, $\varrho \in (0, 1)$. Because of (1) and the triangle inequality, the function f can be expanded into the series

(2)
$$f(z) = P_{\nu_1}(z) + \sum_{k=1}^{\infty} [P_{\nu_{k+1}}(z) - P_{\nu_k}(z)]$$

convergent uniformly in E. By the definition of \hat{E} series (2) is uniformly convergent in \hat{E} to a function \tilde{f} . Moreover,

$$\begin{split} \|\tilde{f} - P_{\nu_k}\|_{\hat{E}} &= \Big\| \sum_{l=k}^{\infty} (P_{\nu_{l+1}} - P_{\nu_l}) \Big\|_{\hat{E}} \leqslant \sum_{l=k}^{\infty} \|P_{\nu_{l+1}} - P_{\nu_l}\|_{E} \\ &\leq M \sum_{l=k}^{\infty} (\varrho^{\nu_{l+1}} + \varrho^{\nu_l}) \leqslant \frac{2M}{1-\varrho} \, \varrho^{\nu_k} \,. \end{split}$$

This implies that $\tilde{f} \in \mathcal{B}(\hat{E}, \{\nu_k\})$ as asserted.

LEMMA 4. Let E be a compact set in C^n and let \mathscr{F} be a family of polynomials satisfying the following conditions:

- (i) $|f(z)| \geqslant m > 0$, $z \in E$, $f \in \mathscr{F}$,
- (ii) there exists an open set U in C^n such that $E \subset U$ and $f(z) \neq 0$ for $z \in U$, $f \in \mathscr{F}$.

Then, for every $\omega > 1$ there exists an open set V in C^n such that $E \subset V$ and

$$|f(z)| \omega^{\text{deg}f} \geqslant m$$
, $z \in V$, $f \in \mathscr{F}$ (1).

Proof. Fix a number $\omega > 1$ and a point $a = (a_1, ..., a_n) \in E$ and put $\theta = \omega^{-1/n}$. Given a polynomial $f \in \mathscr{F}$, we write

(1)
$$g(z_1) = f(z_1, a_2, \ldots, a_n) = \beta(z_1 - a_1) \ldots (z_1 - a_1),$$

where the numbers β , a_j (j = 1, ..., l) may depend on f and on the point $a, 0 \le l \le \deg f$. By assumption (i) we obtain

$$|\beta| \geqslant \frac{m}{|a_1 - a_1| \dots |a_1 - a_l|}.$$

Hence

$$(3) |g(z_1)| \geqslant m \left| \frac{z_1 - a_1}{a_1 - a_1} \right| \cdots \left| \frac{z_1 - a_l}{a_1 - a_l} \right|.$$

Take $\delta = \operatorname{dist}(E, C^n \setminus U)/2\sqrt{n}$. By (ii), $f(z) \neq 0$ for $z \in P(a, \delta) = K(a_1, \delta) \times \ldots \times K(a_n, \delta)$, where $K(a_k, \delta) = \{z_k \in C : |z_k - a_k| \leq \delta\}$. Hence $|a_1 - a_j| > \delta$ for $j = 1, \ldots, l$. So, setting $\delta_{\omega} = (1 - \theta) \delta$ gives

$$(4) \qquad \left|\frac{z_1-a_j}{a_1-a_j}\right|\geqslant 1-\left|\frac{a_1-z_1}{a_1-a_j}\right|\geqslant 1-\frac{\delta_\omega}{\delta}=\theta \qquad \text{for } z_1\in K(a_1,\,\delta_\omega).$$

Hence by (1) and (3) we obtain

$$(5) |f(z_1, a_2, \ldots, a_n)| \geqslant m\theta^l \geqslant m\theta^{\operatorname{deg} f} \text{for } z_1 \in K(a_1, \delta_{\omega}).$$

⁽¹⁾ If n = 1 and E is connected, this lemma is due to Leja [2]. He proved it by means of his well-known Polynomial Lemma. Our proof is a direct one.

By induction, in order to complete the proof it is enough to show that:

if

(6) $|f(z)| \geqslant m\theta^{k \operatorname{deg} f}$

for
$$z \in K(a_1, \delta_{\omega}) \times \ldots \times K(a_k, \delta_{\omega}) \times a_{k+1} \times \ldots \times a_n$$
,

then

 $|f(z)| \geqslant m\theta^{(k+1)\deg t}$

for
$$z \in K(a_1, \delta_{\omega}) \times \ldots \times K(a_{k+1}, \delta_{\omega}) \times a_{k+2} \times \ldots \times a_n$$
.

To this end fix a point $b^k = (b_1, \ldots, b_k) \in K(a_1, \delta_{\omega}) \times \ldots \times K(a_k, \delta_{\omega})$. Then the polynomial of one variable z_{k+1}

$$g(z_{k+1}) = f(b^k, z_{k+1}, a_{k+2}, \ldots, a_n)$$

may be written in the form

$$g(z_{k+1}) = \beta(z_{k+1} - a_1) \dots (z_{k+1} - a_l),$$

where β , a_j (j = 1, ..., l) are numbers dependent on f, b^k and $a_{k+2}, ...$..., a_n , $0 \le l \le \deg f$. By the same reasoning as in the proof of (5) one can show that

$$|g(z_{k+1})|\geqslant m\, heta^{(k+1)\,\deg f} \quad ext{ for } z_{k+1}\,\epsilon\;K(a_{k+1},\,\delta_\omega)$$

independently of the choice of $b^k \in K(a_1, \delta_{\omega}) \times \ldots \times K(a_k, \delta_{\omega})$, which ends the proof of (6). By (5) and (6) we obtain

$$|f(z)| \omega^{\text{deg}f} \geqslant m \quad \text{for } z \in P(a, \delta_{\omega}).$$

Since δ_{ω} does not depend on the choice of the point $a \in E$ and $f \in \mathscr{F}$, we get the assertion of the lemma with $V = \bigcup_{a \in E} \operatorname{int} P(a, \delta_{\omega})$.

LEMMA 5. Let f be a complex function defined and bounded on a compact set E in C^n . Let φ be a function holomorphic in a neighbourhood Ω of the set F = f(E). If for a sequence of polynomials $\{P_k\}$

$$\lim_{k\to\infty} \lVert f - P_k \rVert_E = 0\,,$$

then there exist constants M>0 and $K_0>0$ such that

$$\left|\varphi\big(f(z)\big)-\varphi\big(P_k(z)\big)\right|\leqslant M\left|f(z)-P_k(z)\right|,\quad z\in E,\, k\geqslant k_0.$$

Proof. Fix an δ , $0 < \delta < \operatorname{dist}(F, \partial \Omega)$. Write $\tilde{M} = \sup\{|\varphi(w)| : \operatorname{dist}(w, F) \leq \delta\}$. By the Schwarz inequality we obtain

$$|\varphi(w)-\varphi(b)|\leqslant rac{2\,M}{\delta}|w-b|\quad ext{ for } w\,\epsilon\,K(b,\,\delta/2),\,\,b\,\epsilon\,F.$$

Hence, by fixing a k_0 such that $||f - P_k||_E < \delta/2$ for $k \ge k_0$ and putting $M = 2\tilde{M}/\delta$, we conclude the proof.

Denote by Φ the extremal function of a compact set E in \mathbb{C}^n , i.e.

$$egin{aligned} \varPhi(z,\ E) &= \sup_{
u\geqslant 1} \left\{ \sup\{|P_{
u}(z)|^{1/
u}\colon P_{
u} \ ext{is a polynomial in } z=(z_1,\ldots,z_n)
ight. \ & ext{such that $\deg P_{
u}\leqslant
u$ and $\|P_{
u}\|_E\leqslant 1\}
ight\}, \quad z\in C^n, \end{aligned}$$

introduced by Siciak [5]. We shall often use the following properties of $\Phi(z, E)$ (see [5]):

(1)
$$\Phi(z, E) \geqslant 1$$
, $z \in C^n$ and $\Phi(z, E) = 1$, $z \in E$,

$$(2) \qquad |P(z)| \leqslant ||P||_E [\Phi(z,E)]^{\text{deg}P}, \qquad z \in C^n, \text{ for every polynomial } P,$$

(3)
$$\Phi(z, E) \leqslant \Phi(z, F), \quad z \in \mathbb{C}^n, \text{ if } F \subset E,$$

(4)
$$\Phi(z, E) = \max_{1 \leq i \leq n} {\{\Phi(z_i, E_i)\}}, \quad z \in \mathbb{C}^n, \text{ for } E = E_1 \times \ldots \times E_n.$$

We add that in the case n=1 the function $\Phi(z,E)$ is equivalent to Leja's extremal function L=L(z,E) (see [3]). This note and properties (3), (4) give us some criteria for the continuity of $\Phi(z,E)$, $E\subset C^n$, expressed by properties of L.

The results of the previous lemmas enable us to prove the following THEOREM 1. Let E be a compact set in C^n . Let $f \in \mathcal{B}(E, [\{v_k\}])$ and let φ be a holomorphic function in an open set Ω in C such that $F = f(E) \subset \Omega$. 1° If $E = \hat{E}$ and the following condition is satisfied:

CONDITION (W). There exist polynomials $\{P_{\mu_k}\}$, $\deg P_{\mu_k} \leqslant \mu_k$, $\{\mu_k\} \in [\{\nu_k\}]$, a neighbourhood U of E in C^n and constants A>0 and $k_0>0$ such that

(i)
$$||f-P_{\mu_k}||_E \leqslant M \varrho^{\mu_k} for k \geqslant 1,$$

M and ϱ being constants independent of k, $\varrho \in (0, 1)$,

(ii)
$$P_{\mu_k}(U) \subset \Omega, \quad k \geqslant k_0,$$

and

(iii)
$$\sup_{z\in U} \left| \varphi \left(P_{\mu_k}(z) \right) \right| \leqslant A^{\mu_k} \quad \text{ for } k \geqslant k_0,$$

then $\varphi \circ f \in \mathcal{B}(E, [\{v_k\}]).$

2° If the extremal function $\Phi(z, E)$ is continuous in E and φ is a rational function, then Condition (W) is necessary that $\varphi \circ f \in \mathscr{B}(E, [\{v_k\}])$.

Proof. 1° By Condition (W) and Lemma 1, for every $k \ge k_0$ there exist polynomials $\{R_{\mu}^k\}$ such that

(1)
$$\|\varphi \circ P_{\mu_k} - R_{\mu}^k\|_{\mathcal{E}} \leqslant M_1 A^{\mu_k} \cdot \varrho_1^{\mu} \quad \text{for } \mu = 1, 2, ...,$$

 M_1 and ϱ_1 being constants independent of k, $\varrho_1 \in (0, 1)$. Take an integer l so large that $A \varrho_1^l \leq \varrho_1$. Then, by (1), we obtain

On the other hand, by (i) of Condition (W) and Lemma 5, we have

$$\|\varphi \circ f - \varphi \circ P_{\mu_k}\|_E \leqslant M_2 \varrho^{\mu_k}, \quad k \geqslant k_1,$$

where the constant M_2 does not depend on k. By (2), (3) and the triangle inequality we get

$$\|\varphi\circ f-R^k_{l\mu_k}\|_E\leqslant M\eta^{l\mu_k},$$

where $\eta = [\max(\varrho, \varrho_1)]^{1/l}$ and $M = \max(M_1, M_2)$. This implies that $\varphi \circ f \in \mathcal{B}(E, [\{\nu_k\}])$.

2° Suppose that $f, \varphi \circ f \in \mathcal{B}(E, [\{\nu_k\}]),$ where

$$\varphi(w) = \frac{W_p(w)}{Z_q(w)} = \frac{a(w-a_1)\ldots(w-a_p)}{b(w-\beta_1)\ldots(w-\beta_q)},$$

 $a_i \neq \beta_j, \ i=1,\ldots,p, \ j=1,\ldots,q, \ \beta_j \in C \setminus F.$ By our assumptions there exist polynomials $\{P_{\mu_k}\}, \ \{Q_{\omega_k}\}, \ \text{where} \ \ \{\mu_k\}, \ \{\omega_k\} \in [\{\nu_k\}], \ \deg P_{\mu_k} \leqslant \mu_k, \ \deg Q_{\omega_k} \leqslant \omega_k, \ \text{and constants} \ M, \ \varrho \ \text{independent of} \ k, \ \varrho \in (0,1), \ \text{such that}$

$$||f-P_{\mu_k}||_E\leqslant M\varrho^{\mu_k}\quad \text{ for } k\geqslant 1,$$

and

By the definition of $\mathscr{B}(E, [\{v_k\}])$ we may assume that $\mu_k = \omega_k = v_k$, $k \ge 1$. It follows from (4) and Lemma 5 that

$$\|\varphi\circ f - \varphi\circ P_{r_k}\|_E \leqslant M_1 \varrho^{r_k}.$$

Hence and by (5), we have

(6)
$$||W_p \circ P_{r_k} - (Z_q \circ P_{r_k})Q_{r_k}||_E \leqslant M_1 ||Z_q \circ P_{r_k}||_E \varrho^{r_k}.$$

By (3) and Lemma 5 there exists a constant M_2 such that

$$\|Z_q \circ P_{r_k}\|_E \leqslant M_2 \quad \text{ for } k \geqslant 1.$$

Hence by (6) and property (2) of the extremal function $\Phi(z, E)$ we obtain

(7)
$$|W_{p}(P_{\nu_{k}}(z)) - Z_{q}(P_{\nu_{k}}(z))Q_{\nu_{k}}(z)| \leq M_{3} \varrho^{\nu_{k}} [\Phi(z, E)]^{\nu_{k}},$$

for $z \in C^n$, where $M_3 = M_1 \cdot M_2$, $r = \max(p, q+1)$. Take a number $\eta \in (\varrho, 1)$. Since $\Phi(z, E)$ is continuous in E and because of property (1) of Φ , there

exists an open set U such that $E \subset U$ and $\varrho \Phi^r(z, E) < \eta$ for $z \in U$. Hence by (7) we get

(8)
$$|W_p(P_{\nu_k}(z)) - Z_q(P_{\nu_k}(z))Q_{\nu_k}(z)| \leqslant M_3 \eta^{\nu_k} \quad \text{for } z \in U.$$

Suppose that $Z_q(P_{\nu_k}(\mathring{z})) = 0$ for a point $\mathring{z} \in U$. Then $P_{\nu_k}(\mathring{z}) = \beta_{j_0}$ for a certain $j_0 \in \{1, \ldots, q\}$. Write $\delta = \min_{i,j} \{|a_i - \beta_j|\}$. By (8) we would have

$$0 < |b| \, \delta^p \leqslant |b(\beta_{j_0} - \alpha_1) \, \dots \, (\beta_{j_0} - \alpha_p)| \, = |W_p(\beta_{j_0})| \leqslant M_3 \, \eta^{\nu_k}.$$

This is impossible for sufficiently large k. So, we have

$$(9) Z_q(P_{\nu_k}(z)) \neq 0 \text{for } z \in U, k \geqslant k_0 = k_0(\delta, p).$$

This means that (ii) of Condition (W) is satisfied.

It remains to prove (iii). To this end take $\varepsilon = \frac{1}{2} \min \{ \operatorname{dist}(F, \beta_j) \}$ and write $F_{\varepsilon} = \{ w \in C : \operatorname{dist}(w, F) < \varepsilon \}$. By (4),

$$P_{\nu_k}(z) \, \epsilon \, F_{\epsilon} \quad \text{ for } z \, \epsilon \, E, \text{ if } k \geqslant k_1 = k_1(\epsilon).$$

Hence

(10)
$$\min_{z \in E} \left| Z_q(P_{\nu_k}(z)) \right| \geqslant \inf_{w \in F_s} \left| Z_q(w) \right| = m > 0 \quad \text{for } k \geqslant k_2,$$

where $k_2 = \max(k_0, k_1)$. By (9), (10) and Lemma 4 there exists an open set V such that $E \subset V \subset U$ and

$$ig|Z_qig(P_{
u_k}(z)ig)ig|2^{q
u_k}\geqslant m \quad ext{ for } z\,\epsilon\,V\,, \ \ k\geqslant k_2\,.$$

Hence, by (4), Lemma 5 and property (2) of Φ , we obtain

$$\sup_{z\in V} \bigl|\varphi\bigl(P_{r_k}(z)\bigr)\bigr| \leqslant 1/m \, \|W_p \circ P_{r_k}\|_E \bigl[(\eta/\varrho)^{1/r}\bigr]^{p_{r_k}} 2^{q_{r_k}} \leqslant A^{r_k}$$

for $k \ge k_2$, where A is a suitably chosen constant independent of k. The proof is completed.

Remark. If $E \neq \hat{E}$, then, in general, Condition (W) is not sufficient for $\varphi \circ f \in \mathcal{B}(E, [\{\nu_k\}])$. One can easily come to this conclusion by considering $E = \{z \in C : |z| = 1\}, f(z) = z \text{ and } \varphi(w) = 1/w.$

Nevertheless, because of Lemma 3, given $f \in \mathcal{B}(E, [\{v_k\}])$, we may always assume that $E = \hat{E}$.

THEOREM 2. Let E and φ be the same as in 2° of Theorem 1. If Condition (W) is satisfied for polynomials $\{P_{\mu_k}\}$, then it is satisfied for every sequence of polynomials $\{Q_{\varkappa_k}\}$ such that $\{\varkappa_k\} \in [\{\mu_k\}]$, $\deg Q_{\varkappa_k} \leqslant \varkappa_k$ and

$$||f-Q_{\star_k}||_E \leqslant M_1 \varrho_1^{\star_k}, \quad k \geqslant 1,$$

 M_1 and ϱ_1 being constants independent of k, $\varrho_1 \epsilon (0, 1)$.

Proof. We have only to prove (ii) and (iii) of Condition (W) for $\{Q_{s_k}\}$.

(ii) If $\Omega = C$, the proof is trivial. Assume that $C \setminus \Omega = B \neq \emptyset$. By (1), (i) of Condition (W) for $\{P_{\mu_k}\}$ and the definition of $[\{\mu_k\}]$ we have

$$||P_{\mu_k}-Q_{\kappa_k}||_E\leqslant M_2\,\varrho_2^{\omega_k}, \quad k\geqslant 1,$$

for suitable constants M_2 and ϱ_2 , $\varrho_2 \in (0,1)$, $\omega_k = \max(\mu_k, \varkappa_k)$. Take a number $\eta \in (\varrho_2, 1)$. Since the extremal function $\Phi(z, E)$ is continuous in E, there exists an open set V, $E \subset V$, such that $\varrho_2 \Phi(z, E) \leqslant \eta$ for $z \in \operatorname{cl} V$. Hence, by (2) and property (2) of Φ , we get

$$|P_{\mu_k}(z) - Q_{\kappa_k}(z)| \leqslant M_2 \eta^{\omega_k} \quad \text{for } z \in V, \ k \geqslant 1.$$

Write $2m = \operatorname{dist}(F, B)$. By (i) of Condition (W) for every point $w \in B$ we have

$$|P_{\mu_k}(z)-w|\geqslant |f(z)-w|-|f(z)-P_{\mu_k}(z)|\geqslant 2m-Marrho^{\mu_k}\geqslant m>0$$

for $z \in E$ and $k \geqslant k_1 = k_1(m)$. Hence, by (ii) of Condition (W), the family $\mathscr{F} = \{P_{\mu_k} - w \colon w \in B, \ k \geqslant k_2 = \max(k_0, k_1)\}$ of polynomials in z satisfies the assumptions of Lemma 4. So, for every $\lambda > 1$ we can find an open set V_{λ} such that $E \subset V_{\lambda} \subset U$ and

$$(4) |P_{\mu_k}(z) - w| \lambda^{\mu_k} \geqslant m, z \in V_{\lambda}, w \in B, k \geqslant k_2.$$

If we take $\lambda < 1/\eta$, then, by (3) and (4), we get

$$|Q_{\varkappa_k}(z) - w| \geqslant |P_{\mu_k}(z) - w| - |P_{\mu_k}(z) - Q_{\varkappa_k}(z)| \geqslant m \lambda^{-\mu_k} - M_2 \eta^{\omega_k} > 0$$

for $z \in V_{\lambda} \cap V$, $w \in B$, $k \geqslant k_3$, where k_3 is sufficiently large. Thus, $Q_{\kappa_k}(V_{\lambda} \cap V) \subset \Omega$ for $k \geqslant k_3$ as asserted.

(iii) Since the function φ is rational, it is enough to apply property (2) of the extremal function Φ and Lemma 4.

Now let E be a polynomially convex compact set in C (2) and let $f \in \mathcal{B}(E, [\{v_k\}])$. Assume that the extremal function $\Phi(z, E)$ is continuous in E. Comparing Lemma 2 and Theorem 1, by the Montel theorem, gives the following

THEOREM 3. If φ is a rational function with at least two poles lying in $C \setminus f(E)$, then $\varphi \circ f \in \mathcal{B}(E, [\{v_k\}])$ if and only if there exists a function \tilde{f} holomorphic in a neighbourhood of E such that $\tilde{f}|_E = f$.

We shall now illustrate our results by means of some examples.

COUNTER-EXAMPLE 1. Let $E = \{z \in C : |z| \leq 1\}$. Then $\Phi(z, E) = \max\{|z|, 1\}$ for $z \in C$ (see [5]). Take a sequence $\{\nu_k\}$ of positive integers such that $\nu_{k+1}/\nu_k \to \infty$ as $k \to \infty$ and define

$$f(z) = \sum_{k=1}^{\infty} \frac{z^{\nu_k}}{a^{\nu_{k-1}}} \quad (a > 1).$$

^(*) In this case it is well known that $E = \hat{E}$ if and only if the set $C \setminus E$ is connected.

One can easily check that $f \in \mathcal{B}(E, \{v_k\})$ and f cannot be analytically continued onto any neighbourhood of E. Let φ be a rational function with at least two poles. Then it follows from Theorem 3 that $\varphi \circ f \notin \mathcal{B}(E, [\{v_k\}])$.

Counter-example 2. Define E and f as above and set

$$g(z) = f^2(z) - M^2,$$

where $||f||_E < M$. Since $\mathscr{B}(E, [\{v_k\}])$ is a ring; then $g \in \mathscr{B}(E, [\{v_k\}])$. Because of Theorem 3 it is seen that $1/g \notin \mathscr{B}(E, [\{v_k\}])$.

Counter-example 3. Define the sequence $\{v_k\}$ as

$$v_0=1, \quad v_{k+1}=2^{v_k}, \quad k\geqslant 0,$$

and set

$$f(x) = \sum_{l=0}^{\infty} \frac{\cos \nu_k \arccos x}{\nu_k}$$
 for $x \in E = [-1, 1]$.

It is known (Bernstein [1], p. 294) that $f \in \mathcal{B}(E, \{v_k\})$ and f is not differentiable in E. Define

$$g(x) = f(x) + M,$$

where $||f||_E < M$. We will show that $1/g \notin \mathcal{B}(E, [\{\nu_k\}])$. To this end write

$$P_{\nu_k}(z) = M + \sum_{l=0}^k \frac{\cos \nu_l \arccos z}{\nu_l} = M + \sum_{l=0}^k \frac{(z + \sqrt{z^2 - 1})^{\nu_l} + (z - \sqrt{z^2 - 1})^{\nu_l}}{2\nu_l}.$$

It is clear that P_{ν_k} is a polynomial in z of degree ν_k . Moreover,

$$||g-P_{\nu_k}||_E < 2(1/2)^{\nu_k}$$
.

Fix a number r>1. Since the sequence $\{v_k/v_{k-1}\}$ is increasing, for $|z+\sqrt{z^2-1}|=R\geqslant r$ we have

$$\begin{split} |P_{r_k}(z)| \geqslant & \left| \frac{(z + \sqrt{z^2 - 1})^{r_k} + (z - \sqrt{z^2 - 1})^{r_k}}{2v_k} \right| - \\ & - \left| M + \sum_{l=0}^{k-1} \frac{(z + \sqrt{z^2 - 1})^{r_l} + (z - \sqrt{z^2 - 1})^{r_l}}{2v_l} \right| \\ & \geqslant \frac{R^{r_k} - R^{-r_k}}{2v_k} - \sum_{l=0}^{k-1} \frac{R^{r_l} + R^{-r_l}}{2v_l} - M \\ & > \frac{1}{2} \left[\left(\frac{R^{r_k/r_{k-1}}}{2} \right)^{r_{k-1}} - \sum_{l=0}^{k-1} \left(\frac{R^{r_k/r_{k-1}}}{2} \right)^{r_{l-1}} \right] - \left(M + \frac{R}{2} + 1 \right) > 0 \,, \end{split}$$

as $k \ge k_0 = k_0(r)$. Thus, all the zeros of the polynomials $\{P_{\nu_k}\}$ $(k \ge k_0)$ are contained in the ellipse $\{z \in C \colon |z + \sqrt{z^2 - 1}| < r\}$ with the foci -1 and 1. So, the sequence $\{P_{\nu_k}\}$ does not satisfy (ii) of Condition (W) for $\varphi(w) = 1/w$. Since $\Phi(z, [-1, 1]) = |z + \sqrt{z^2 - 1}|$ for $z \in C$ (see [3]), it is continuous in C. Hence, by Theorems 1 and 2, $1/g \notin \mathcal{B}([-1, 1], [\{\nu_k\}])$.

EXAMPLE 4. Let E be a compact set in C^n . If $f \in \mathcal{B}(E, [\{\nu_k\}])$ and φ is a polynomial; then $\varphi \circ f \in \mathcal{B}(E, [\{\nu_k\}])$.

EXAMPLE 5. Let E be a polynomially convex compact set in C^n such that the extremal function $\Phi(z, E)$ is continuous in E. Take an increasing sequence $\{v_k\}$ of positive integers such that $v_{k+1}/R^{v_k} \to \infty$ as $k \to \infty$ for a certain constant R > 1. Write $\mu_k = [R^{v_k}], k = 1, 2, \ldots$ Given an $\varrho \in (0, 1)$, we put

$$\varepsilon_{\nu} = \varrho^{\mu_k} \quad \text{ for } \nu_k \leqslant \nu < \nu_{k+1}, \ k \geqslant 1.$$

By the well-known Bernstein theorem (see [6]) there exists a function $f \in \mathscr{C}(E)$ such that

$$\mathscr{E}_{\nu}(f,E) = \varepsilon_{\nu}, \quad \nu = 1, 2, \dots$$

Since

$$\limsup_{r\to\infty} \sqrt[l]{\mathscr{E}_r(f,E)} \geqslant \lim_{k\to\infty} \varrho^{\mu_r/r_{k+1}-1} = 1;$$

then, in virtue of Lemma 1 (for the case $f_k = f$), the function f cannot be continued to a holomorphic function onto any neighbourhood of E. Take polynomials P_{ν_k} such that

$$\mathscr{E}_{r_k}(f,E) = \|f - P_{r_k}\|_E, \quad k \geqslant 1.$$

Since $\mathscr{E}_{\mu}(f,E) \leqslant \mathscr{E}_{\nu}(f,E)$ for $\mu \geqslant \nu$, then $f \in \mathscr{B}(E,\{\mu_k\})$. By the assumption of continuity of $\Phi(z,E)$ in E we can choose an open set U, $E \subset U$, such that $\Phi(z,E) < R$ for $z \in U$. Then, by property (2) of Φ , we have

$$|e^{P_{\nu_k}}(z)| \leqslant A^{R^{\nu_k}}, \quad z \in U,$$

and

$$|e^{-P_{v_k}}(z)| \leqslant A^{R^{v_k}}, \quad z \in U,$$

A being a positive constant. Hence the sequences $P_{\mu_k} \equiv P_{\nu_k}$ and $Q_{\mu_k} \equiv -P_{\nu_k}$ ($k=1,2,\ldots$) satisfy Condition (W) for $\varphi(w)=e^w$. Thus, by Theorem 1, the functions e^f and e^{-f} are members of $\mathscr{B}(E, [\{\mu_k\}])$.

References

- [1] С. Н. Бернштейн, Собрание сочинений, Издат. АН СССР, т. 1, 1952.
- [2] F. Leja, Sur une propriété des suites de polynomes, Ann. Soc. Polon. Math. 21 (1948).

- [3] Theory of analytic functions, Warszawa 1957 (Polish).
- [4] W. Pleśniak, Quasianalytic functions of several complex variables, Zesz. Nauk. UJ 15 (1971), p. 135-145.
- [5] J. Siciak, On some extremal functions and their applications in the theory of analytic functions of several complex variables, Trans. Amer. Math. Soc. 105 (2) (1962), p. 322-357.
- [6] А. Ф. Тиман, Теория приближения функций действительного переменного, Москва 1960.

Reçu par la Rédaction le 4. 2. 1971