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1. Introduction. According to the classical theorem of Vitali and
Carathéodory, every bounded Lebesgue measurable function on [0, 1]
is measure-theoretically equivalent to a function of Baire type 2.
In a Boolean space with an appropriate Borel measure, it is known
that each bounded measurable function is almost everywhere equal to
a continuous function. Motivated by these theorems, one might term
a topological measure space an a-space if each bounded measurable funec-
tion defined thereon were equivalent to a function of Baire type a and if a
were the smallest ordinal for which this were true. The aforementioned
spaces would then furnish examples of a-spaces for ¢ = 0 and a = 2.
An interesting question springs immediately to the mind: Do there exist
a-spaces for other ordinals a? This seems to be a difficult problem.

One proof of the Vitali-Carathéodory theorem shows that each
bounded measurable function on [0, 1] is equivalent to the limit of
a monotone sequence of semicontinuous functions. This suggests a clas-
sification of functions and measure spaces that seems to be more natural
for the consideration of this sort of problem. The continuous functions,
the semicontinuous functions and the limits of sequences of semicon-
tinuous functions are of types 0, 1 and 2. The functions of higher types
are obtained by taking limits of sequences of functions of lower types.
An a-space is then defined just as before except that one uses as approxi-
mating functions the functions of type a according to this new scheme.
The spaces mentioned above again supply examples of a-spaces for a = 0
and a = 2 in this new classification. Moreover, it is found that the unit
interval provided with the density topology and Lebesgue measure is
a 1-space.

Another proof of the Vitali-Carathéodory theorem depends on
Lusin’s theorem. This suggests that the possibility of approximation
of measurable functions by functions of various types a is determined by
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certain regularity properties of the measure. This does turn out to be
the case as the theorems of sections 3 and 4 show. In particular, it is
found that in the case of an outer regular measure, the associated topolog-
ical measure space is necessarily of type 2 or less.

2. Preliminary considerations. Definition 1. A topological measure
space is a topological space (X, T) and a measure space (X, 2, u) such
that X' is a o-algebra that contains T, and u assigns positive measure to
each non-empty element of T. The quadruple (X,T, 2, u) is used to
denote the topological measure space.

In all that follows, only finite measures will be considered.

Definition 2. Let (X,T) be a topological space. For each non-
negative ordinal a, the classes #,(#,) of real-valued functions on X are
defined inductively as follows: .#,(%,) is the class of all lower- (upper-)
semicontinuous functions; if a exceeds 1 and if the classes #£;(%;) have
been defined for all § < a, then Z,(%,) is the class of all limits of con-
vergent sequences of elements of () Z4(|J%;). A member of ¥, %,
is said to be of type a. e f<a

If the class of all continuous real-valued functions defined on X be
denoted by %, (= %,), then it is clear that ¥y c £, c ... «¢ £, and
that %y <« %, = ... « %,, where £ is the first uncountable ordinal. Since
every function of Baire type 1 is simultaneously an element of .#, and
U,, it follows that every Baire function can be found among the classes
L, ~ U,. However, it will be noted in the sequel that there are semi-
continuous functions on some topological spaces that are not Baire
functions of any order. Thus, these classification schemes are distinct
from the Baire scheme. Two measurable sets are said to be equivalent
(E ~ F) if their symmetric difference has measure zero. Two measurable
functions are equivalent (f ~ g) if they are almost everywhere equal.
The equivalence sets engendered by a measurable set £ and a measurable
function f are denoted by [E] and [f].

Definition 3. A topological measure space (X,T,ZX, u) has the
property P, (0 < f < Q) if each bounded real-valued function de-
fined on X and measurable () is equivalent to an element of #;. If
a = inf{f: (X, T, X, u) has the property P,}, then (X, T, X, u) is termed
an a-space.

REMARK 4. If (X, T, X, u) has the property Py, then every bounded

real-valued function defined on X and measurable (X) is equivalent to an
element of U,.

Proof. On first noting that the negative of a lower-semicontinuous
function- is upper-semicontinuous, it is easily established by transfinite
induction that the negative of a member of %, is an element of %,, for
all a < Q. If (X, T, 2, u) has property P, and if f is a bounded measur-
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able (2) function, then —f is equivalent to an element of %#;, whence f
is almost everywhere equal to a member of %,.

3. The outer regular case. If the measure u associated with a topo-
logical measure space (X, T, X, u) is outer regular, that is to say, if

p(E) = inf{u(U): E < U, UeT},

for all F in X, then the bounded measurable (X) functions have a partic-
ularly simple structure. Indeed, the following theorem is obtained as
a corollary of the other theorems of this section:

THEOREM 5. If u is outer regular, then the topological measure space
(X,T,2, u) is an a-space with a < 2.

Moreover, the several examples of this section demonstrate the
existence of a-spaces for a =0, a =1 and a = 2.

THEOREM 6. In order that the topological measure space (X, T, X, u)
be a 0-space, it is both necessary and sufficient that each measurable subset
of X be equivalent to a set that is both closed and open.

PRELIMINARY REMARK. Under the general hypotheses of Theorem 6,
the requirement that each measurable set be equivalent to a closed-
and-open set is sufficient to guarantee that the closure of each open
set is again open. (In the language of point set topology, the topological
space (X, T) is extremally disconnected.)

Proof of remark. Let V be an open set. By hypothesis there exists
a closed-and-open set U such that U ~clV. Since U — clV is an open
null set, it follows that U is a subset of c1V. Because ¢l V — U is a null
set and because U is closed, V — U is also an open set of zero measure;
thus, V is a subset of U. Finally, the relations of inclusion V<« Ucel V
imply that U =cl V.

Proof of sufficiency. If f = y,, with F in X, let g = x,,, where
U is a closed-and-open set that is equivalent to E. Clearly, g is contin-
uous, and ¢ is equivalent to f. It follows at once that the equivalence
set determined by a simple function always contains a continuous element.

If f is a non-negative, bounded measurable (X) function, then, accord-
ing to one of the most ancient theorems of measure theory, there exists
a non-decreasing sequence of simple functions, {f,}, converging to f.
For each natural number n, let g, be a continuous element of [f,]. Since

{#: gn(@) > sup {f(y): y e X}} < {2: gu(@) > f(2)} = {&: gul@) > ful@)},

and since the first of these sets is open while the last has measure zero,
the functions g, are uniformly bounded above. Now, according to a theorem
of Stone [14], if (X, T) is an extremally disconnected topological space
and if (Z,; <) is the lattice of continuous real-valued functions associated
with (X, T), then a non-void subset of .Z, that has an upper bound in
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(Zy; <) has also a least upper bound there. Thus, {g,} has a least upper
bound, g, in (%,; <). From the method of choice of the g, it follows that
g(x) = f(x) for almost all z in X. Let ¢ be a positive real numbér, and let

B = {z: g(2) > f(z)+ ¢}
For each natural number %, let
Fy = {®: g(®) > gr(®)+ ¢}
Since gi(z) < f(x) a.e., it follows that u(Fi) > u(E), for all k. If
F =kﬁ1 F), then the preceding observation together with the rela-

tion of each g; to the corresponding f, imply that u(F) > u(E). Let U
be a closed-and-open set that is equivalent to F. Because F is closed, the
null set U — F is open. But the only open null set is the empty set;
thus, U is a subset of ¥. Now the continuous function

h = 9— Xy

is an upper bound of {g,} in {Z,; <}, whence, for every z in X, h(z) > g(x).
Hence, U is empty, F is a null set, and, as a result, F is also null. Since
e was an arbitrarily chosen positive number, it must be the case that

u({z: g(@) > f()}) =0,

and, as a consequence, g is equivalent to f.

Finally, one treats the general case by resolving the measurable
function into its positive and negative parts.

Proof of necessity. Let E be an arbitrary element of 2, and
let f = x,. If g is a continuous element of [f], then the open set

V = {=: g(2)¢{0, 1}}

has measure zero and is therefore empty. Thus, g is the characteristic
function of some measurable set U. Since g is continuous, U is both open
and closed. Finally, the equivalence of U and E follows from the equi-
valence of f and g.

In order to show that the preceding discussion has not been con-
ducted ¢n vacuo, the following well-known example is pertinent.

Example 7. Let (I, L, m) be the Lebesgue measure space asso-
ciated with the unit interval, and let (L(m),m) be the corresponding
measure algebra. The Boolean algebra L(m) is isomorphic to the Boolean
algebra A of all closed-and-open subsets of a certain Boolean space X.
If T is such an isomorphism, then it follows that the set function u de-
fined on A by the relation

p(U) = m(T~' D),
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for all U in A, is a measure on A. If X is the ¢-algebra generated by A,
then it is known that each element of X is uniquely representable as the
symmetric difference of an element of A and a first category element
of Z. Hence, u can be extended to a set function # meaningfully defined
on all of X in the following manner: if F is an element of X, then

#(B) = pu(U),

where E = UAM, U is an element of A and M is a set of the first category.
It is a not too difficult task to verify that u is a measure on X that vanishes
on the class of all measurable sets of the first category.

Now let T be the topology generated by A, and let U be an arbitrary
element of T. There exists a subset B of A such that U = | {G';: GeB}.
Since A is a complete (with respect to the Boolean order relation) lattice,
B has a least upper bound V, and there follows from the finiteness of the
measure, the existence of a denumerable subset {V,:n =1,2,...}

of A such that V = V Ve, and W = UV a (measurable) subset

n=1 =1

of U. It then follows from the definition of p that #(W) = u(V); hence,
V —U is a subset of the null set V—W. Moreover, U is a subset of V
so that U is an element of X*, the completion of X with respect to u.
Thus, if x* is the completion of u, then (X, T, X*, u*) is a 0-space.

In this connection, it should be noted that Mibu [10] has given
a proof that the condition of Theorem 6 is sufficient to guarantee that
a Boolean space with a suitable measure is a 0-space. (A part of the
proof is attributed by Mibu to Ogasawara.)

If the measure u of a 0-space (X,T, X, u) is complete, then the
preceding discussion shows that it is a category measure as defined by
Oxtoby [12]. This is a consequence of Oxtoby’s remark that the comple-
tion of a finite Borel measure m is a category measure if and only if
m(G@) = m(cl @) for every open set G, and m (@) is positive for every open
set of the second category.

THEOREM 8. Let (X, T, 2, u) be a topological measure space. Each
bounded real-valued function defined on X and measurable (X) is equivalent
to a lower-semicontinuous function if and only if each measurable set is
equivalent to an open set.

PRELIMINARY COMMENT. Since the negative of a lower-semicontinuous
function is upper-semicontinuous and since the complement of an open
set is closed, it is clear that a true proposition can be obtained from
Theorem 8 by replacing in the statement of that theorem the word lower
by the word upper or the word open by the word closed.

Proof of sufficiency. If f = y,, with E an element of X, let
g = xy» Where U is open and equivalent to E. Then g is lower-semicon-
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tinuous and is almost everywhere equal to f. Since the class of lower-
semicontinuous functions is closed under addition and non-negative
scalar multiplication, it is an immediate consequence of the foregoing
that each simple function is equivalent to a lower-semicontinuous one,

If f is bounded, non-negative and measurable (X), let {f,} be a non-
decreasing sequence of simple functions having f as limit function. For
each natural number », let g, be a lower-semicontinuous function that

is equivalent to f,, and let ¢ = \/ ¢, (the function obtained by taking
n=1

the pointwise supremum of the functions g¢,). Then ¢ is also lower-semi-
continuous (see, for example, [8], p. 101), and ¢ is an element of [f]. That
g is real-valued (and, in fact, bounded) follows from the boundedness
of f by means of an argument identical to that used at the corresponding
step in the proof of Theorem 6.

In the general case, first note that the route followed above can
be retraced using closed sets in place of open ones to show that the equi-
valence class of each bounded, non-negative measurable (2) function
contains a bounded upper-semicontinuous element. Thus, if ¢ and % are
bounded equivalents of f* and f~, if g is lower-semicontinuous and if
h is upper-semicontinuous, then g—»h is a lower-semicontinuous equi-
valent of f.

Proof of necessity. Let E be an arbitrary element of X, and
let f = x,. If g is a lower-semicontinuous element of [f], then the open
set {z: g(z) > 0} is an element of [F].

Theorem 8 can now be applied to show that the following is an
example of a 1-space.

Example 9. Let (I, L, m) be the Lebesgue measure space asso-
ciated with the unit interval, and let T* be the density topology on I
introduced by Haupt and Pauc [7]. A set U is open in this topology if
it is measurable and if the metric density of U exists and is equal to 1
at each of its points. Thus, it follows from the Lebesgue Density Theorem
and Theorem 8, that (I, T*, L, m) is an a-space with a < 1. This topo-
logical measure space is not a 0-space, because I is connected with respect
to the topology T* [6], so that there are no non-trivial closed-and-open
sets.

It is interesting to note that Blumberg has observed in [1] that
each Lebesgue measurable function f defined on I is equivalent to an
approximately lower-semicontinuous function and to an approximately
upper-semicontinuous function. These two functions are the upper and
lower measurable boundaries of f constructed by Blumberg. Now the
approximately semicontinuous functions are precisely those functions that
are semicontinuous with respect to T™; thus, the Blumberg measurable
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boundaries of a bounded measurable function f are concrete examples
of the T*-semicontinuous equivalents of f, the existence of which is guar-
anteed by Theorem 8.

One might question whether (I,7T*, L, m) be a 1l-space according
to the original classification proposed in the introduction. This would
certainly be true if every function semicontinuous with respect to the
density topology were the limit of a sequence of approximately contin-
uous functions, i.e., a function of Baire class 1 (with respect to T*).
However, the approximately continuous functions are all elements of
the first Baire class associated with T, the ordinary topology on I [2].
Thus, if every T*-semicontinuous function were the limit of a sequence of
T*-continuous functions, then each such function would be an element
of the second Baire class associated with T. But if ¥ is a Lebesgue null
set that is not a Borel set, then y, is T*-upper-semicontinuous but is
not an element of any Baire class (7). Nevertheless, it might be the
case that each T*-semicontinuous function is equivalent to an element
of the first Baire class (T*). By virtue of Theorem 8 and Example 9,
this proposition is equivalent to the assertion that (I,T*, L,m) is
a 1l-space according to the Baire scheme. Although it will not be consid-
ered further here, the question has been answered in the affirmative.
A complete discussion of the problem is contained in a forthcoming
article [16].

In connection with the above remarks, one might note that the work
of Hing Tong [15] can be applied to yield a proof, different from that
given by Goffman, Neugebauer, and Nishiura [5], of the fact that the
density topology is not normal.

LEMMA 10. Fach T*-closed set is a T*-Gs.

Proof. Let F be closed in the density topology. Then F is measur-
able, so that, as a consequence of the outer regularity of the Lebesgue
measure, there exists a sequence {U,} of sets open in the Euclidean topo-

logy such that each U, contains F, and m( ﬂ U, = m(F). Since
K = ﬂU —F is a null set, it is T™- closed hence, each of the sets
Ne=l

V. = U,—K is T*-open. Finally, F = ﬂV

Now, if T* were a normal topology, then it would follow from the
lemma that it would be perfectly normal. Thus, every lower-semicon-
tinuous function would be the limit of an increasing sequence of contin-
uous functions [15]. Since this is impossible, T* cannot be normal.

If one is willing to consider atomic measures, then the question of
the existence of 1-spaces according to the Baire classification can be
easily answered in the affirmative.
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Example 11. Let (X, T) be the one-point compactification of the
topological space obtained by imposing the discrete topology on N, the
set of all natural numbers, and let X be the class of all subsets of X.
A measure y i8 defined on X' as follows: if F is any subset of X, then,

Y 27"~ N*". It is a simple matter to verify that (X, T, X, u)

neENN
is a 1-space.

One further question related to Example 9 is worthy of consideration.
One notes that T™ is a strengthening of T. Is it possible to find a yet
stronger topology T** such that (I, T**, L, m) is a 0-space? This prob-
lem remains unsolved (P 561).

THEOREM 12. Let (X,T, 2, u) be a topological measure space. In
order that each bounded, real-valued measurable (X) function be equivalent
to an element of Z,, it i8 both necessary and sufficient that each measurable
set be equivalent to a set of type G,.

PRELIMINARY COMMENT. A ftrue proposition can be obtained from
the statement of Theorem 12 by replacing £, by %, or by replacing G,
by F,.

Proof of sufficiency. If F is a measurable set, then F is equi-

valent to a set G of type G;. If G = (" U,, where each U, is open,

oo n=1
then y,~ A fa, where f, =y, . Since each f, is lower-semicon-
n=1 n

tinuous, x, is equivalent to an element of £,. Since £, is both positively
homogeneous and additive, it follows at once that each simple function
is equivalent to a member of #,. In similar fashion, it is easy to see that
the class of all functions that are equivalent to elements of %, contains
the class of all simple functions. If f is an arbitrary bounded non-negative
measurable function, then there exist monotone sequences of simple
functions {f.}, {gn}, such that

[o o] (o ¢]
f= V= Agn
n=1 n=1
For each n, let h, be an element of %,, that is equivalent to fa, and

let k, be an equlvalent of g, that lies in &%,. Then, h = V h, is an

element of #,, k = /\ k, is an element of #, and both h a,nd k are
n=1

equivalent to f. Because f is bounded and because non-empty open sets
have positive measure, » and % are necessarily real-valued.

In the general case, decompose f into its positive and negative parts.
From the above, there exist a real-valued element g of £, and a real-
valued element h of %, such that f ~ g—h. Since the negative of an
element of %, is an element of %,, the proof is complete.
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Proof of necessity. Let E be a measurable set, and let f be an
element of £, that is equivalent to y,. Then f = lim fn for some sequence

{fn} of lower- semicontinuous functions. Since f = /\ V fx, and, since
n=1 k=n

each of the functions V fx is lower-semicontinuous, one may suppose
ke=n

that {f,} is a non-increasing sequence. Now, in this case,
E~{o: f(x) =1} ~{2: f(2) > }}
- N Eh@>B> O @A >

> N {o:fol0) > 3} = {o:£(@) > )

~{x: f(x) =1} ~ E;

thus, F is equivalent to ﬂ {x: fo(x) > }}, a set of type G,.

Example 13. Let (I ) L, m) be the Lebesgue measure space asso-
ciated with the unit interval. If T is the ordinary topology on I, then one
proof of the theorem of Vitali and Carathéodory shows that (I,7T, L, m)
is an a-space with a not larger than 2. (On the other hand, since the
Lebesgue measure is outer regular and because semicontinuous functions
are of Baire type 1 in this topology, one notes that Theorem 12 yields
the theorem of Vitali and Carathéodory as a simple corollary.) Since
there exists a Lebesgue measurable set ¥ such that both F and I—F
meet each non-empty element of T' in a set of positive measure, it follows
from Theorem 8 that (I,7T,L,m) is neither a 1-space nor a 0-space.
Thus, the class of all 2-spaces is non-empty.

If a measure satisfies the G; eondition of Theorem 12, then it is said
to be smooth. The term was introduced by Schaerf [13] in connection
with his study of Lusin’s theorem in a general setting. (If the discussion
be restricted to a consideration of real-valued functions, then one says
that Lusin’s theorem holds for a topological measure space (X, T, 2, u)
in case there exists for each measurable (X) function f and for each posi-
tive number ¢, a corresponding measurable set F such that the restriction
of f to E is a continuous function, and u(X—E) < ¢.) The following
proposition is a trivial consequence of Theorem 12 (above) and Theorem 1
and its supplement of [13].

CoROLLARY 14. A topological measure space is an a-space, with a < 2,
if and only if Lusin’s theorem holds in that space. Thus, the generalized
Lusin theorem is equivalent to a generalization of the theorem of Vitali and
Carathéodory.
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By virtue of Theorems 6, 8 and 12 and the examples accompanying
them, the promise made at the beginning of this section has been redeemed.

4. A general classification theorem. The theorems of the last section
show that those a-spaces with a < 2 are characterized by certain regu-
larity or smoothness properties of their measures. The similarity of the
methods used to prove Theorems 8 and 12 leads one to suspect that those
theorems are special cases of a more general result of the same type.
This is indeed the case, as the next theorem shows. After first noting
a few elementary properties of the classes £, and %,, one can easily con-
struct a proof of the proposition by modifying slightly the argument
used to establish Theorem 12.

In order to simplify the statement of the theorem, one finds it con-
venient to first extend the scheme of notation customarily employed
in the canonical classification of the Borel subsets of a topological space.
A set is said to be of type G_,; (or F_,) if it is both closed and open. If
a is an ordinal, then G, and F, have their usual meanings. (If a = 0,
one defines a — 1 to be —1.)

THEOREM 15. If a is a finite ordinal number, then a topological meas-
ure space has property P, if and only if each measurable set is equivalent
to a set of type G,_, (F,_,).

Since no a-spaces with a > 2 are known to exist, Theorem 15 is
somewhat modestly proclaimed.
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