EXTENSION OF LOCALLY UNIFORMLY EQUIVALENT METRICS

BY

JOUNI LUUKKAINEN (HELSEINKI)

Hausdorff showed that if \(A \) is a closed subset of a metric space \((X, d)\) and if \(\rho \) is a metric on \(A \) which is topologically equivalent to \(d|A \times A \), then there is a metric on \(X \) that extends \(\rho \) and is topologically equivalent to \(d \) ([1], II, Theorem 3.2). The word "topologically" can be replaced either by "Lipschitz" [5] or by "locally Lipschitz" [3] or, under some additional assumptions, by "uniformly" [5] (for Lipschitz equivalent and uniformly equivalent metrics the closedness of \(A \) is irrelevant). The purpose of this paper is to show that "locally uniformly" applies as well. The results and the proofs are similar to those for locally Lipschitz equivalent metrics in [3].

A map \(f: S \to T \) between uniform spaces is called \textit{locally uniformly continuous} if each point of \(S \) has a neighborhood on which \(f \) is uniformly continuous. If \(f \) is bijective and both \(f \) and \(f^{-1} \) are locally uniformly continuous, then \(f \) is called a \textit{locally uniform homeomorphism}. Two metrics \(d_1 \) and \(d_2 \) on a set \(D \) are said to be \textit{locally uniformly equivalent} if the identity map \(\text{id}: (D, d_1) \to (D, d_2) \) is a locally uniform homeomorphism. A metric on a subset \(A \) of a metric space \((X, d)\) is said to be \textit{locally uniformly compatible} if it is locally uniformly equivalent to \(d|A \times A \).

Lemma. Let \((X, d)\) be a metric space, let \(A \subseteq X \) be closed, and let \(\rho \) be a locally uniformly compatible metric on \(A \) such that \(\rho \leq d|A \times A \). Let \(e(x, y) \) be the minimum of \(d(x, y) \) and \(\inf \{d(x, a) + \rho(a, b) + d(b, y) \mid a, b \in A\} \) for \(x, y \in X \). Then \(e \) is a locally uniformly compatible metric on \(X \) extending \(\rho \).

Proof. By [2], p. 517, \(e \) is a metric on \(X \) that extends \(\rho \) and is topologically equivalent to \(d \). To make the proof independent of the last fact, we remark that \(A \) is closed in \((X, e)\) because \(e(x, A) = d(x, A) \) for each \(x \in X \). Observe that \(e \leq d \) and that \(e(x, y) = d(x, y) \) for all \(x, y \in X \) such that \(e(x, A) \geq \varepsilon, e(y, A) \geq \varepsilon, \) and \(e(x, y) < 2\varepsilon \) for some \(\varepsilon > 0 \). Hence it suffices to prove that each \(p \in A \) has a neighborhood \(U \) in \((X, e)\) such that \(\text{id}: (U, e|U \times U) \to (X, d) \) is uniformly continuous. There is an \(r > 0 \) such that if \(V = \{x \in A \mid \rho(x, p) < 2r\} \), then the identity map
id: \((V, \varrho | V \times V) \to (X, \bar{d})\) is uniformly continuous. We show that one can choose
\[U = \{x \in X \mid e(x, p) < r\}. \]

Let \(\varepsilon > 0\). Choose \(\delta > 0\) with \(\delta < \min(r, \varepsilon/2)\) such that \(a, b \in V\) and \(\varrho(a, b) < \delta\) imply \(d(a, b) < \varepsilon/2\). Suppose that \(x, y \in U\) and \(e(x, y) < \delta\). To prove \(\bar{d}(x, y) < \varepsilon\), we may assume \(e(x, y) \neq \bar{d}(x, y)\). Then there are \(a, b \in A\) such that \(\bar{d}(x, a) + \varrho(a, b) + \bar{d}(b, y) < \delta\). This implies
\[\varrho(a, p) = e(a, p) \leq e(a, x) + e(x, p) < d(a, x) + r < \delta + r < 2r, \]
whence \(a \in V\); similarly \(b \in V\). Since \(\varrho(a, b) < \delta\), we get
\[\bar{d}(x, y) \leq \bar{d}(x, a) + \bar{d}(a, b) + \bar{d}(b, y) < \delta + \varepsilon/2 < \varepsilon. \]

Theorem 1. Let \(\varrho\) be a locally uniformly compatible metric on a closed subset \(A\) of a metric space \((X, \bar{d})\). Then there is a locally uniformly compatible metric on \(X\) extending \(\varrho\).

Proof. Let \(m(A)\) be the space of all bounded real functions on \(A\) (with the sup norm). There is an isometric embedding \(f: (A, \varrho) \to m(A)\) (see [1], II, Proposition 1.1). Since \(f\) is locally uniformly continuous with respect to \(\bar{d}\), by [6], Theorem 1, \(f\) has a locally uniformly continuous extension \(\tilde{f}: X \to m(A)\). Define a metric \(\bar{d}_1\) on \(X\) by
\[\bar{d}_1(x, y) = \bar{d}(x, y) + \|\tilde{f}(x) - \tilde{f}(y)\|. \]

Then \(\bar{d}_1\) is locally uniformly compatible and \(\varrho \leq \bar{d}_1|A \times A\). Thus an application of the Lemma completes the proof.

Next we study the case of a non-closed \(A\).

Theorem 2. Let \(\varrho\) be a locally uniformly compatible metric on a subset \(A\) of a metric space \((X, \bar{d})\). Then \(\varrho\) has an extension to a locally uniformly compatible metric on some neighborhood of \(A\).

Proof. From the Lemma in [4] it follows easily that \(\varrho\) has an extension to a locally uniformly compatible metric \(\varrho_1\) on an open neighborhood \(U\) of \(A\) in \(\bar{A}\). Now \(U = V \cap \bar{A}\) for some open neighborhood \(V\) of \(A\) in \(X\). Since \(U\) is closed in \(V\), by Theorem 1 there is a locally uniformly compatible metric \(\varrho_2\) on \(V\) extending \(\varrho_1\), and thus \(\varrho\).

Remark. In Theorems 1 and 2 the extension of \(\varrho\) can be chosen to be complete (respectively, totally bounded) if \(\varrho\) is complete (respectively, totally bounded) and \(\bar{d}\) is locally complete (respectively, separable and locally totally bounded). These results can be proved as similar results in [3].
REFERENCES

UNIVERSITY OF HELSINKI

HELSINKI

Reçu par la Rédaction le 10.8.1978; en version modifiée le 29.2.1980