Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Cover of the book
Tytuł książki

Linear extensions, linear averagings, and their applications to linear topological classification of spaces of continuous functions

Seria
Rozprawy Matematyczne tom/nr w serii: 58 wydano: 1968
Zawartość
Warianty tytułu
Abstrakty
EN

CONTENTS
Introduction................................................................................................................................................. 5
Preliminaries.............................................................................................................................................. 9
§ 1. Regular operators and their products............................................................................................ 11
§ 2. Exaves. Extension and averaging operators................................................................................. 15
§ 3. Linear multiplicative exaves and retractions. Localization principle......................................... 21
§ 4. Integral representations and compositions of linear exaves.................................................... 22
§ 5. Milutin spaces..................................................................................................................................... 27
§ 6. Dugundji spaces................................................................................................................................ 34
§ 7. Exaves and topological groups....................................................................................................... 37
§ 8. Application to linear topological classification of spaces of continuous functions............... 40
§ 9. Linear averaging operators and projections onto spaces of continuous functions.............. 47
Notes and Remarks.................................................................................................................................. 59
Appendix: Category-theoretical approach............................................................................................. 75
Bibliography................................................................................................................................................ 80
Słowa kluczowe
Tematy
Miejsce publikacji
Warszawa
Copyright
Seria
Rozprawy Matematyczne tom/nr w serii: 58
Liczba stron
89
Liczba rozdzia³ów
Opis fizyczny
Rozprawy Matematyczne, Tom LVIII
Daty
wydano
1968
Twórcy
Bibliografia
  • [1] R. Adams, N. Aronszajn and K. Smith, Theory of Bessel potentials. Part II, Ann, Inst. Fourier 17.2 (1967), 1-135.
  • [2] P. S. Alexandroff, On the theory of topological spaces, Dokl. Akad. Nauk SSSR 2 (1936), 51-54.
  • [3] P. S. Alexandroff and V. I. Ponomarev, On dyadic bicompacta, Fund. Math. 50 (1962), 419-429 (Russian).
  • [4] D. Amir, Continuous function spaces with the bounded extension property, Bull. Res. Counc. of Israel 10 F (1962), 133-138.
  • [5] D. Amir, Projections onto continuous function spaces, Proc. Amer. Math. Soc. 15 (1964), 396-402.
  • [6] D. Amir, On projections and simultaneous extensions, Israel J. Math. 2 (1964), 245-248.
  • [7] D. Amir, On isomorphism of continuous function spaces, Israel J. Math. 3 (1965). 205-210.
  • [8] R. Arens, Extensions of functions on fully normal spaces, Pacific J. Math. 2 (1952), 11-22.
  • [9] R. Arens, Projections on continuous function spaces, Duke Math. Journal 32 (1965), 469-478.
  • [10] N. Aronszajn, Potentiels bessélien, Annales de l'lnstitut Fourier 15 (1965), 43-58.
  • [11] N. Aronszajn and P. Panitchpakdi, Extension of uniformly continuous transformations and hyperconvex metric spaces, Pacific J. Math. 6 (1956), 405-439.
  • [12] S. Banach, Théorie des opérations linéaires, Warszawa 1932.
  • [13] S. Banach, Theory of functions of real variables, Warszawa 1951 (Polish).
  • [14] C. Bessaga, On topological classification of complete linear metric spaces, Fund. Math. 56 (1965), 251-288.
  • [15] C. Bessaga and A. Pełczyński, Spaces of continuous functions (IV) (On isomorphic classification of spaces of continuous functions), Studia Math. 19 (1960), 53-62.
  • [16] C. Bessaga and A. Pełczyński, Some remarks on homeomorphism of Banach spaces, Bull. Acad. Polon. Sci. ser. sci. math., astr. et phys. 8 (1960), 757-761.
  • [17] C. Bessaga and A. Pełczyński, Some remarks on homeomorphisms of F-spaces, ibidem 10 (1962), 265-270.
  • [18] R. H. Bing, Metrization of topological spaces, Canadian J. Math. 3 (1951), 175-186.
  • [19] R. H. Bing, Extending a metric, Duke Math. J. 14 (1947), 511-519.
  • [20] G. Birkhoff, Moyennes de fonctions bornées, Algèbre et Théorie des Numbres, Colloques International du Centre Nation, de la Rech. Scient. N° 24 (1950), 143-153.
  • [21] G. Birkhoff, Lattices in applied mathematics, Proceedings of Symposia in Pure Mathematics, volume II (1961), Lattice Theory, 155-184.
  • [22] E. Bishop, A general Rudin-Carleson theorem, Proc. Amer. Math. Soc. 13 (1962), 140-143.
  • [23] F. Bohnenblust, Convex regions and projections in Minkowski spaces, Ann. of Math. 39 (1938), 301-308.
  • [24] M. Bockstein, Un théorème de séparabilité pour les produits topologiques, Fund. Math. 35 (1948), 242-246.
  • [25] F. F. Bonsall, J. Lindenstrauss and R. R. Phelps, Extreme positive operators on algebras of functions, Math. Scand. 18 (1966), 161-182.
  • [26] A. Borel, Sections locales de certains espaces fibrés, Comptes Rendus de l'Academie des Sciences (Paris), 230 (1950), 1246-1248.
  • [27] C. J. R. Borges, On stratifiable spaces, Pacific J. Math. 17 (1966), 1-16.
  • [28] K. Borsuk, Über Isomorphie der Funktionalräume, Bull. Int. Acad. Pol. Sci. 1933, 1-10.
  • [29] K. Borsuk, Sur les rétractes, Fund. Math. 17 (1931), 152-170.
  • [30] K. Borsuk, Über eine Klasse von lokal zusammenhängenden Räumen, ibid. 19 (1932), 235-242.
  • [31] K. Borsuk, Theory of retracts, Monogr. Mat. 44, Warszawa 1967.
  • [32] N. Bourbaki, Algèbre, Chapitre III, Elements de Mathématique, Hermann 1948.
  • [33] N. Bourbaki, Topologie générale, Chap. 10, Éléments de Mathématique, Hermann, Paris 1949.
  • [34] On the structure of averaging operators, J. Math. Analys. and Appl. 5 (1962), 347-377.
  • [35] B. Brainerd, Averaging operators on the ring of continuous functions on compact space, Australian J. Math. 4 (1964), 293-298.
  • [36] L. de Branges, The Stone-Weierstrass theorem, Proc. Amer. Math. Soc. 10 (1959); 822-824
  • [37] H. B. Brinkmann und E. Puppe, Kategorien und Funktoren, Berlin-Heidelberg-New York 1966.
  • [38] L. E. Brouwer, Invarianz des n-dimensionalen Gebiets, Math. Ann. 71 (1912), 305-313.
  • [39] L. E. Brouwer, Über die Erweiterung des Definitionsbereichs einer stetigen Funktion, ibidem 79 (1918), 209-211.
  • [40] A. P. Calderón, Lebesgue spaces of differentiable functions and distributions, Proc. Symp. Pure Math. vol. 4 (1961) Partial differential equations, 33-49.
  • [41] C. Carathéodory, Vorlesungen über reelle Funktionen, first edition, Leipzig-Berlin 1918.
  • [42] C. Carathéodory, Vorlesungen über reelle Funktionen, second edition, Leipzig 1927.
  • [43] L. Carleson, Representations of continuous functions, Math. Zeit. 66 (1957), 447-451.
  • [44] J. Cipszer and L. Geher, Extension of functions satisfying a Lipschitz condition, Acta Math. Acad. Sci. Hungar. 6 (1955), 213-220.
  • [45] H. B. Cohen, Injective envelopes of Banach spaces, Bull. Amer. Math. Soc. 70 (1964), 723-726.
  • [46] H. H. Corson, Normality in subsets of product spaces, American Journal of Mathematics 81 (1959), 785-796.
  • [47] H. H. Corson, The weak topology of a Banach space, Trans. Amer. Math. Soc. 101 (1961), 1-15.
  • [48] H. H. Corson and J. Lindenstrauss, On simultaneous extension of continuous functions. Bull. Amer. Math. Soc. 71 (1965), 542-545.
  • [49] H. H. Corson and J. Lindenstrauss, Continuous selections with non-metrizable range, Trans. Amer. Math. Soc. 121 (1966), 492-504.
  • [50] M. M. Day, Normed linear spaces, New York 1962.
  • [51] M. M. Day, Strict convexity and smoothness of normed spaces, Trans. Amer. Math. Soc. 78 (1955), 516-528.
  • [52] L. Danzer, B. Grünbaum and V. Klee, Helly's theorem and its relatives, Amer. Math. Soc., Proceedings of Symposia in Pure Mathematics 7, Convexity 1963, 101-180.
  • [53] C. Davis, Various averaging operations onto subalgebras, Illinois J. Math. 3 (1959), 538-553.
  • [54] D. W. Dean, Subspaces of C(H) which are direct factors of C (H), Proc. Amer. Math. Soc. 16 (1965), 237-242.
  • [55] D. W. Dean, Projections in certain continuous function spaces, Canadian J. Math. 14 (1962), 385-401.
  • [56] Ch. J. de la Vallée Poussin, Intégrales de Lebesgue, functions d'ensemble, classes de Baire, 1934, second édition.
  • [57] C. H. Dowker, On theorem of Hanner, Ark. Math. 2 (1952), 307-313.
  • [58] J. Dugundji, An extension of Tietze's theorem, Pacific J. Math. 1 (1951), 353-367.
  • [59] N. Dunford and J. T. Schwartz, Linear Operators I, New York 1958.
  • [60] B. Efimov, On dyadic spaces, Dokl. Akad. Nauk SSSR 151 (1963), 1021-1024 (Russian).
  • [61] B. Efimov, Matrizability and E-product of compact spaces, ibidem 152 (1963), 794-797 (Russian).
  • [62] B. Efimov, On weight structure of dyadic compacts, Vestnik Moscov. Univ. 2 (1964), 3-11 (Russian).
  • [63] B. Efimov and R. Engelking, Remarks on dyadic spaces, II, Colloquium Mathematicum 13 (1965), 181-197.
  • [64] S. Eilenberg, Extensions and classification of continuous mappings, Lectures in Topology, 57-100. Ann Arbor, Michigan 1941.
  • [65] S. Eilenberg and N. Steenrod, Foundations of algebraic topology, Princeton, Now Jersey 1952.
  • [66] R. Engelking, Cartesian products and dyadic spaces, Fund. Math. 57 (1965), 287-304.
  • [67] R. Engelking and A. Pełczyński, Remarks on dyadic spaces, Colloquium Mathematicum 11 (1963), 55-63.
  • [68] A. Esenin-Volpin, On connection between local and global weight of dyadic compacta, Dokl. Akad. Nauk SSSR 68 (1949), 441-444 (Russian).
  • [69] C. Foiaş and I. Singer, On bases in C([0, 1]) and $L^1([0, 1])$, Rev. Roumaine Math. Pures et Appl. 10 (1965), 931-960.
  • [70] T. W. Gamelin, Restrictions of subspaces of C(X), Trans. Amer. Math. Soc. 112 (1964), 278-286.
  • [71] L. Gillman and M. Jerison, Rings of Continuous Functions, New York 1960.
  • [72] A. M. Gleason, Projective topological spaces, Illinois J. Math. 2 (1958), 482-489.
  • [73] I. Glicksberg, Some uncomplemented function algebras, Trans. Amer. Math. Soc. Ill. (1964), 121-137.
  • [74] D. B. Goodner, Projections in normed linear spaces, Trans. Amer. Math. Soc. 69 (1950), 89-108.
  • [75] A. Grothendieck, Produits tensoriels topologiques et espaces nucléaires, Mem. Amer. Math. Soc. 16 (1955).
  • [76] A. Grothendieck, Sur les applications linéaires faiblement campactes d'espaces du type C(K), Canadian J. Math. 5 (1953), 129-173.
  • [77] B. Grünbaum, Some applications of expansion constants, Pacific J. Math 10 (1960), 193-201.
  • [78] B. Grünbaum, Projections onto some function spaces, Proc. Amer. Math. Soc. 13 (1962), 316-324.
  • [79] O. Hanner, Retraction and extension of mappings of metric and non-metric spaces, Ark. Mat. 2 (1952), 315-360.
  • [80] O. Hanner, Solid spaces and absolute retracts, ibidem 1 (1951), 375-385.
  • [81] O. Hanner, Some theorems on absolute neighbourhood retracts, ibidem 1 (1951), 389-408.
  • [82] M. Hasumi, The extension, property of complex Banach spaces, Tôhoku Math. J. 10 (1958), 135-142.
  • [83] F. Hausdorff, Mengenlehre, Dover, New York 1944.
  • [84] F. Hausdorff, Über halbstetige Funktionen und deren verallgemeinerung, Math. Zeit. 5 (1919), 292-309.
  • [85] F. Hausdorff, Erweiterung einer stetigen. Abbildung, Fund. Math. 30 (1938), 40-47.
  • [86]. M. R. Hestenes, Extension of the range of a differentiable function, Duke Math. J. 8 (1941), 183-192.
  • [87] E. Hewitt, A note on O-dimensional compact groups, Fund. Math. 50 (1961), 95-97.
  • [88] E. Hewitt and K. A. Ross, Abstract harmonic analysis, Berling-Göttingen-Heidelberg 1963.
  • [89] S. T. Hu, Homotopy theory, New York 1959.
  • [90] S. T. Hu, Theory of retracts, Detroit 1965.
  • [91] A. Hulanicki, On the topological structure of 0-dimensional topological groups Fund. Math, 46 (1959), 317-320.
  • [92] A. Hulanicki, On locally compact topological groups of power of continuum, ibidem 44 (1957), 156-158.
  • [93] A. Hulanicki, On cardinal numbers related with locally compact groups, Bull. Acad. Polon. Sci., Ser. sci. math., astr. et phys. 6 (1958), 67-70.
  • [94] W. Hurewicz and H. Wallman, Dimension theory, Princeton University Press 1941.
  • [95] A. Ionescu-Tulcea, On the lifting property V, Ann. Math. Statist. 36 (1965), 819-828.
  • [96] C. Ionescu-Tulcea, On the lifting property and disintegration of measures, Bull. Amer. Math. Soc. 71 (1960), 829-842.
  • [97] J. R. Isbell, Uniform spaces, American Math. Society, Providence 1964.
  • [98] J. R. Isbell and Z. Semadeni, Projection constants and spaces of continuous functions, Trans. Amer. Math. Soc. 107 (1963). 38-48.
  • [99] L. Ivanovskiǐ, On a hypothesis of P. S. Alexandroff, Dokl. Akad. Nauk SSSR 123 (1958), 785-786 (Russian).
  • [100] B. F. Jones, On the first countability axiom for locally compact Hausdorff spaces, Colloq. Math. 7 (1959), 33-34.
  • [101] M. I. Kadec and B. Ya. Levin, On a solution of Banach problem concerning topological equivalence of spaces of continuous functions, Trudy Semin. Funct. Anal. Voronesh 3-4 (1960), 20-25 (Russian).
  • [102] J. Kampé de Férriet, L'état actuel du problène de la turbulence I, La science Aéronautique 3 (1934), 9-34.
  • [103] J. Kampé de Férriet, L'état actuel du problème de la turbulence II, ibidem 4 (1935), 12-52.
  • [104] S. Kakutani, Simultaneous extension of continuous functions considered as positive defined linear operation, Jap. J. Math. 17 (1940), 1-4.
  • [105] J. L. Kelley, Averaging operators on $C_∞(X)$, Illinois J. Math. 2 (1958), 214-223.
  • [106] J. L. Kelley, General topology, Princeton, New Jersey, 1955.
  • [107] J. L. Kelley, Banach spaces with extension property, Trans. Amer. Math. Soc. 72 (1952), 323-326.
  • [108] M. D. Kirszbraun, Über die zusammenziehende und Lipschitzschen Transformationen, Fund. Math. 22 (1934), 77-108.
  • [109] V. L. Klee, Convex bodies and periodic homeomorphism in Hilbert space, Trans. Amer. Math. Soc. 74 (1953), 10-43.
  • [110] B. R. Kripke and R. B. Holmes, Approximation of bounded functions by continuous functions, Bull. Amer. Math. Soc. 71 (1965), 896-897. '
  • [111] C. Kuratowski, Topologie I, 4th edition, Warszawa 1958.
  • [112] C. Kuratowski, Topologie II, 4th edition, Warszawa 1961.
  • [113] C. Kuratowski, Remarque sur les transformations continues des espaces métriques, Fund. Math. 30 (1938), 48-49.
  • [114] V. Kuzminov, On a hypothesis of P. S. Aleksandroff in the theory of topological groups, Dokl. Akad. Nauk SSSR 125 (1959), 727-729 (Russian).
  • [115] H. Lebesgue, Sur le problème de Dirichlet, Rendiconti di Palermo 24 (1907), 371-402.
  • [116] Ł. Lichtenstein, Eine elementare Bemerkung zur reellen Analysis, Math. Z. 30 (1929), 794-795.
  • [117] J. Lindenstrauss, Extension of compact operators, Mem. Amer. Math. Soc. No 48 (1964).
  • [118] J. Lindenstrauss, On non-linear projections in Banach spaces, Michigan Math. Journal 11 (1964), 268-287.
  • [119] S. P. Lloyd, On certain projections in spaces of continuous functions, Pacific J. Math. 13 (1963), 171-175.
  • [120] S. P. Lloyd, On extreme averaging operators, Proc. Amer. Math. Soc. 14 (1963), 305-310.
  • [121] E. Marczewski (E. Szpilrajn), Remarque sur les produits cartésiens d'espaces topologiques, Dokl. Akad. Nauk SSSR 31 (1941), 525-528.
  • [122] S. Mardésić and P. Papić, Continuous images of ordered compacta, the Suslin property and dyadic compacta, Glasnik Mat.-Fiz. i Astr. 17 (1962), 3-25.
  • [123] S. Mazurkiewicz et W. Sierpiński, Contributions à la topologie des ensembles dénombrables, Fund. Math. 1 (1920), 17-27.
  • [124] E. J. McShane, Extension of range of functions, Bull. Amer. Math. Soc. 40 (1934), 837-842.
  • [125] E. J. McShane, Necessary conditions in generalized-curve problems of the calculus of variations Duke Math. J. 7 (1940), 25-27.
  • [126] R. D. McWilliams, On projections of separable subspaces of (m) onto (c), Proc. Amer. Math. Soc. 10 (1959), 872-876.
  • [127] E. Michael, Some extension theorems for continuous functions, Pacific J. Math. 3 (1953), 789-806.
  • [128] E. Michael, A linear mapping between function spaces, Proc. Amer. Math. Soc. 15 (1964), 407-409.
  • [129] E. Michael, Three mapping theorems, Proc. Amer. Math. Soc. 15 (1964), 410-415.
  • [130] E. Michael, Convex structures and continuous selections, Canadian J. Math. 11 (1959), 556-575.
  • [131] E. Michael, Continuous selections I, Annals of Math. 63 (1956), 361-382.
  • [132] E. Michael, Continuous selections II, ibidem 64 (1956), 562-580.
  • [133] E. Michael, Continuous selections III, idibem 65 (1957), 375-390.
  • [134] E. Michael and A. Pełczyński, A linear extension theorem, Illinois J. Math. 11 (1967), 563-579.
  • [135] E. J. Mickle, On the extension of a transformation, Bull. Amer. Math. Soc. 55 (1949), 160-164.
  • [136] A. A. Milutin, On spaces of continuous functions, Dissertation, Moscow State University, 1952 (Russian).
  • [137] A. A. Milutin, Isomorphism of spaces of continuous functions on compacta of power continuum, Tieoria Funct., Funct. Anal, i Pril. (Kharkov) 2 (1966), 150-156 (Russian).
  • [138] B. Mitchell, Theory of categories, New York-London 1965.
  • [139] B. S. Mitjagin, Approximative dimension and bases in nuclear spaces, Usp. Mat. Nauk, 16 J6 4 (1961), 63-132 (Russian).
  • [140] D. Montgomery and L. Zippin, Topological transformation groups, New York 1955.
  • [141] P. S. Mostert, Sections in principal fibre spaces, Duke Math. J. 23 (1956), 57-72.
  • [142] S. T. Chen Moy, Characterizations of conditional expectation as a transformation on function spaces, Pacific J. Math 4 (1954), 47-63.
  • [143] L. Nachbin, Some problems in extending and lifting continuous linear transformations, Proc. Internat. Sympos. on Linear Spaces, Jerusalem (1961), 340-350.
  • [144] J. Nagata, Modern dimension theory, Amsterdam 1965.
  • [145] C. Olech, Approximation of set-valued functions by continuous functions, to appear in Colloq. Math. 19 (1968).
  • [146] Z. Ogrodzka, On simultaneous extension of infinitely differentiable functions. Studia Mathematica 28 (1967), 193-207.
  • [147] A. Pełczyński, On simultaneous extension of continuous functions, Studia Mathematics 24 (1964), 285-304.
  • [148] A. Pełczyński, Supplement to my paper on simultaneous extension of continuous functions. Studia Mathematica 25 (1964), 157-161.
  • [149] A. Pełczyński, Projections in certain Banach spaces, Studia Mathematica 19 (1900), 209-228.
  • [150] A. Pełczyński, On the isomorphism of spaces m and M, Bull. Acad, Polon. Sci., ser. sci. math., astr. et phys. 6 (1958), 695-696.
  • [151] A. Pełczyński, A generalisation of Stone's theorem on approximation. Bull. Acad. Polon. Sci., Cl. III. 5 (1957). 105-107.
  • [152] A. Pełczyński and Z. Semadeni, Spaces of continuous functions (III), Studia Mathematics 18 (1959), 211-222.
  • [153] A. Pełczyński and V. N. Sudakov, Remark on non-complemented subspaces of the space m(S), Colloq. Math. 19 (1962), 85-88.
  • [154] R. R. Phelps, Extreme positive operators and homomorphisms, Trans. Amer. Math. Soc. 108 (1963), 265-274.
  • [155] V. I. Ponomarev, On dyadic spaces, Fund. Math. 52 (1963), 351-354 (Russian).
  • [156] L. S. Pontryagin, Continuous groups, 2nd edition, 1954 (Russian). German translation: Topologische Gruppen, I, II, Leipzig 1951 and 1958.
  • [157] O. Reynolds, On the dynamical theory of incompressible viscous fluids and the determination of the criterion. Philos. Trans. Roy. Soc., Ser. A 186 (1894), 123-164.
  • [158] H. P. Rosenthal, Projections onto translation invariant subspaces of $L^p(G)$, Mem. Amer. Math. Soc. 63 (1966).
  • [159] K. A. Ross and A. H. Stone, Product of separable spaces, Amer. Math. Monthly 71 (1964), 398-403.
  • [160] C. C. Rota, On the representation of averaging operators, Rendiconti del Seminaro Matematico della Universita di Padova 30 (1960), 52-64.
  • [161] C. C. Rota, Reynolds operators, Proceedings of Symposia Applied Mathematics volume 16. Stochastic processes in mathematical physics and engineering, Amer. Math. Soc. 1964, 70-83.
  • [162] W. Rudin, Projections on invariant subspaces, Proc. Amer. Math. Soc. 13 (1962), 429-432.
  • [163] W. Rudin, Boundary values of continuous analytic functions. Proc. Amer. Math. Soc. 7 (1956), 808-811.
  • [164] N. Šanin, On the product of topological spaces, Trudy Mat. Inst. Steklova 24 (1948) (Russian).
  • [165] R. T. Seeley, Extension of $C^∞$ functions defined in a half-space, Proc. Amer. Math. Soc. 15 (1964), 625-626.
  • [166] Z. Semadeni, Isomorphic properties of Banach spaces of continuous functions, Studia Mathematica, Seria specjalna (1963), 93-108.
  • [167] Z. Semadeni, Simultaneous extensions and projections in spaces of continuous functions, Lecture Notes at Aarhus University, May 1965.
  • [168] J. P. Serre, Trivialité des espaces fibrés. Applications, Comptes Rendus de l'Academie des Sciences (Paris) 230 (1950), 916-918.
  • [169] E. G. Sklyarenko, On the topological structure of factor spaces of locally bicompact groups, Dokl. Akad. Nauk SSSR 145 (1962), 1004-1007 (Russian).
  • [170] A. Sobczyk, Projection of the space (m) on its subspace ($c_o$), Bull. Amer. Math. Soc. 47 (1941), 938-947.
  • [171] N. E. Steenrod, The topology of fibre bundles, Princeton 1951.
  • [172] H. Tietze, Über Funktionen, die auf einer abgeschlossenen Menge stetig sind, Journal f. Math. 145 (1915), 9-14.
  • [173] P. S. Urysohn, Über die Mächtigkeit der zusammenhängenden Mengen, Mathematische Annalen 94 (1925), 262-295.
  • [174] F. A. Valentine, On the extension of a vector function so as to preserve a Lipschitz condition, Bull. Amer. Math. Soc. 49 (1943), 100-108.
  • [175] F. A. Valentine, Contractions in non-Euclidean spaces, Bull. Amer. Math. Soc. 50 (1944), 710-713.
  • [176] F. A. Valentine, A Lipschitz condition preserving extension for a vector function, Amer. J. Math. 67 (1945), 83-93.
  • [177] H. Whitney, Analytic extensions of differentiable functions defined in closed sets, Trans. Amer. Math. Soc. 36 (1934), 63-89.
  • [178] H. Whitney, Differentiable functions defined in closed sets, Trans. Amer. Math. Soc. 36 (1934), 369-387.
  • [179] A. Weil, L'intégration dans les groupes topologiques et ses applications, Hermanet Cie., Act. Sci. et Jud. 869-1145, deuxième edition, Paris 1953.
  • [180] F. B. Wright, Generalized means, Trans. Amer. Math. Soc. 98 (1961), 187-203.
  • [181] H. Yoshizawa, On simultaneous extension of continuous functions, Proc. Imp. Acad. Tokyo, 20 (1944), 653-654.
Języki publikacji
EN
Uwagi
Identyfikator YADDA
bwmeta1.element.desklight-a781ce7b-ef0c-4168-98ad-7c86ff63a306
Identyfikatory
Kolekcja
DML-PL
Zawartość książki

rozwiń roczniki

JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.