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I. INTRODUCTION

This article surveys recent results on Haar series. To avoid duplication
of material appearing in Golubov [1970], a decision was made to
concentrate on the decade 1971-1981. References to earlier work will be
made when necessary to relate what is herein reported to that which
preceded it. Discussion of how these recent results affect the general theory
of orthogonal series has been left to those more qualified for this task (e.g.,
Ul'janov [1972], Olevskii [1975], and Bockarev [1972] and [1978]).

In addition to this introductory section, the present article contains four
sections: II. Convergence of Haar—Fourier series; III. Approximation by
Haar series; IV. Haar-Fourier coefficients; and V. Uniqueness. These
sections have been divided further into consecutively numbered subsections,
each dealing with a particular facet of the subject indicated in the main
section, and each carrying a descriptive title to help the reader quickly find
those parts in which he is interested. In each subsection one-dimensional
results are discussed first and results on multiple Haar series will come next.
For notational convenience, most multiple Haar series results will be cited
for double Haar series only.

This article ends with a nearly complete listing of all papers on Haar
series published during the decade 1971-1981. This listing is ordered
alphabetically and then chronologically. In the course of our narrative these
papers will be cited, as above, by author and by year.

The following notation and symbolism will be used throughout this
article. Let xo, x1,... represent the Haar system, ie. set y, =1, and if
k = 2™+ p, where 0 < p < 2™ then

(V2" i p2m<x <(p+dy2n,
/2" i (p+Y2m < x <(p+1)2m,
u() =1./2"2 if x=p/2™

—J2"2 i x=(p+1)2m,
0

otherwise.
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The space of functions f such that |f|? is integrable over the unit interval
[0, 1] or the unit square Q =[0, 1] x[0, 1] will be denoted by I?, 1 <p
< ov. The space of functions essentially bounded on [0, 1] or on Q will be
denoted by L*, and the space of functions continuous on [0, 1] or on Q will
be denoted by-%. The context will make it clear whether [0, 1] or Q is being
used.

By a Haar series we mean a formal series of type

S= z ax Xk»
k=0

where a,, a,,... are real numbers. The partial sums of the Haar series S are
defined by

n—1
Se= Y an, n=1,2,...
k=0

The rectangular sums of a double Haar series

are defined by
Sm.n = Z Z ak.jx,‘@xj, m= 1, 2,...,
k=0 j=0

whereas the spherical partial sums of S are defined by

Sk=2 la;u®x: Jk*+j* <R} for 0SR < w.

Given a functionn f integrable on [0, 1], denote its Haar—Fourier
coefficients by

1
ak(f)Ejf(t)Xk(t)dt, k=03 l""’
0

and its Haar—Fourier series by

[« o]

S[fl= Z a (f) xx-

k=0
The modulus of continuity of f is
o(f, ) =sup{lf(t+h—f(@O): 0<t<1-h,0<h<3}

and the LP-modulus of continuity of f is
1-h

w,(f, &) =sup {( [ If (t+m)—f P dr)’?: 0 < h < 8}
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for 0<6<1 and 1 <p < . Given an increasing function @ defined on
[0, 1] such that w(0)=0, and w(d+n) <w(@)+w(n) for 0<, n<é
+n < 1, the Hardy spaces associated with w are defined by

H,={fe¥: o(f, ) =0(w(d) as é— 0}
and
H: = {fel’: w,(f, 6 =0(w(d) as 6 —0}.

Thus, when w(d) = 6%, H, is identical with Lipa, and H?, is identical with
Lip(«, L7).

Given a function f integrable on the unit cube Q, denote its double
Haar-Fourier coefficients by

ak,j(f) = _gf(t’ u)Xk(t)XJ(u)dtdu’ ks.] = 09 la“-,

and its double Haar—Fourier series by

S[f]1= Z Z ak.j(f)Xk@Xj-
k=0j=0
Finally, given a sequence p;, p,,... of primes, let X (p,) denote the
Haar-like system introduced by Vilenkin [1947]. Recall that when p, = 2, the
system X (p,) is exactly the Haar system. In general, X (p,) is said to be of
bounded type if

limsup p, < cc.
n—a
Few results have been obtained for this system and even fewer will be cited.
By and large, those cited are ones which give new information about the
classical Haar system not those which generalize what was already known.

II. CONVERGENCE OF HAAR-FOURIER SERIES

1. Pointwise convergence. In the first article on Haar series, Haar [1910]
showed that if fe L', then S,[f] converges a.e. to f as n— co. This classical
result has now been shown to be best possible in the following sense.
Prohorenko [1971] proved that given a set E <= [0, 1] of Lebesgue measure
zero there is a function fe I?, 1 < p < oo, such that S, [ f] diverges on E. For
the case p = oo, Prohorenko found it necessary to strengthen the condition
on E from “of measure zero” to “at most countable”. It is still not known
whether given an arbitrary set E of measure zero there exists a bounded
function whose Haar-Fourier series diverges on E.

Prohorenko’s result has been sharpened by Lunina (see Subsection 8
below) and generalized to the systems X(p,) of bounded type by Zotikov
[1973]. Zotikov also examined X(p,) for unbounded {p,}, obtaining
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conditions sufficient for X (p,)-Fourier series of [’-functions, p>1, to
converge a.e. Caidze [1972] has obtained some estimates of the growth of
rectangular sums of Haar series whose coefficients do not belong to /2.
Oskolkov [1977] has estimated rates of pointwise convergence of Haar—
Fourier series by looking at Steklov means. A consequence of his work is
that if ¥ is a positive, monotone decreasing function on (0, 1] and if

'I dx
o XY (x)
then feLip(a, I?) for 0 <a <1 and 1 < p < oo implies that

F(x)=S.(f, x) =o(n"*y'?(1/n)) as n—

holds for a.e. xe[0, 1].

Haar’s original result does not hold for multiple Haar series unless the
square partial sums S,, are used. Indeed, Dzagnidze [1964] showed that
there exist functions fe L' such that S, ,[f] diverges ae. However, if
feLlog® L, ie, if

< 00,

g If (¢, wllog™ |f(t, u)|dtdu < oo,

then S, ,[f] converges to f a.e. as m, n — co. Moreover, this result still holds
for feL! if as m, n — oo they remain in some fixed proper cone, i.e., both m/n
and n/m are not greater than a fixed 4 > 1.

The situation does not change for spherical partial sums. Kemhadze
[1977b] showed that if f e L' and if S,, ,[f] converges a.e. as m, n — co, then
Sk[f] also converges a.e. as R— oo. It follows that if feLlog* L, then
Sgr[f] converges a.e. to f as R— oo. For the multiple Haar series case,
Kemhadze proved that fe Llog"~! L is sufficient for a.e. convergence of the
spherical partial sums; here N is the dimension of the domain of f.
Kemhadze [1977a] also announced that given ¢ > 0 there exist a function
feL' and a set E of Lebesgue measure greater than 1—¢ such that Sg[f]
diverges on E as R — 0.

Concerning rearrangements of double Haar series, Kemhadze [1975] has
identified a 1-1 transformation w of the integral lattice points onto
themselves such that if fe L', then the spherical sums

Z Ao, p () Xow.p

*2+j2)1/2<R
converge a.e. to f as R — oo. It is not known whether this result holds for

rectangular sums of rearrangements. (P 1312)

2. Absolute convergence. Uljanov [1951] established that for fe H?,
1 < p < oo, criteria for a.e. absolute convergence of S[f] and convergence of
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the series

o 1
Z Ilak(f)Xk(t)l dt
k=00
are identical. BoCkarev [1972] showed that this equivalence does not hold
when p = 1. Indeed, he proved that S[f] is a.e. absolutely convergent for all
feH, when w(d) = 1/(log(1/5))"/**¢ for some ¢ > 0. Addressing the possible
extension to ¢ = 0, he constructs a continuous function ¢ satisfying

w(p, 8) = 0(1/(leg(1/8))"/?), 0<ds<do <1,

whose Haar-Fourier series can be arranged so as to diverge a..

Recall that Haar-Fourier series of absolutely continuous functions
converge absolutely at dyadic rationals, but may not at dyadic irfrationals. In
fact, given any dyadic irrational ¢ there exists an absolutely continuous
function f whose Haar-Fourier series does not converge absolutely at ¢
(McLaughlin [1969]). Hristov [1973] strengthened this result by showing
that if

®

(1) 2. o(l/n)/n = o,
1

n=

then given a dyadic irrational ¢ there exists an absolutely continuous
function f € H, whose Haar-Fourier series does not converge absolutely at £.
The idea for using (1) comes from Uljanov [1967] who showed that under
this condition, given any real number ¢t (0 <t < 1), there exists an feH,
whose Haar-Fourier series does not converge absolutely at t.

Several results concerning absolute convergence of X (p,)-Fourier series
can be found in Zotikov [1974]. These contain, as corollaries, earlier work
by Uljanov and McLaughlin on Haar-Fourier series.

For absolute convergence of double Haar—Fourier series see the last
paragraph of Subsection 10.

3. Absolute summability. Although Leindler [1961] obtained necessary
and sufficient conditions for a Haar series to be |C, «|-summable a.e., o >
—1, the Haar-Fourier series case had not been investigated separately until
Gaimnazarov [1975] showed that the Haar—Fourier series of an felL! is

|C, a|-summable ae., x > —1, when J
XN n
Y (n**inf ||f= Y ol < .
n=1 ) real k=0

It follows that if

a

2 2 oy (f, I/n)/n'** < oo
1
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for some ae(—1, 0), then the Haar-Fourier series of fis |C, «|-summable a.e.
Whether this result holds for « = 0 is not known. In connection with this, it
is interesting to note that Ul'janov [1970] has shown that if (2) holds for a
=0, then feLlog® L; hence the Haar-Fourier series of f converges
unconditionally in L'-norm (BalaSov [1971]).

4. Adjustment of functions on small sets to enhance convergence of Haar-
Fourier series. One of Men3ov’s celebrated results is that given an a.e. finite-
valued measurable function f and an ¢ > 0O there exists a continuous function
f which coincides with f off a set of measure not greater than ¢ and such that
the (trigonometric) Fourier series of f converges uniformly on [0, 2n].

The Haar series analogue of Men3ov’s result is trivial since S[f] always
converges uniformly when f is continuous. Arutunjan [1966] has shown that
the adjustment from f to f can be made so that S[f] converges absolutely
a.e. as well

Since absolute convergence of a Haar—Fourier series is not equivalent to

(3) f la, (f)| < oo,
k=0

one can ask whether an adjustment resulting in (3) can be made. The answer
is no. In fact, Fridljand [1973] showed that there is a continuous function f°
such that given any f e I* which coincides with fon a set of positive measure
it is the case that

Y la()' =0 for 1<y<2.
k=0

He also announced other versions of this result for f belonging to H, or to
Lipa, 0<a < 1/2.

I11. APPROXIMATION BY HAAR SERIES

5. Haar series with gaps. As observed in the previous section, the Haar
series analogue of MenSov’s adjustment theorem is trivial. This problem
comes alive again if we pass to subseries. Let 0 <m; <m, < ... and
consider the system X = {XM.- 2,. Price [1970] showed that a continuous

function f can be adjusted on a set of arbitrarily small measure to produce a
function f whose X-Fourier series converges both uniformly and absolutely if
and only if X is total in measure (i.e., if and only if given a measurable ¢
there is a sequence of polynomials in X which converges in measure to ¢).
Later [1972] he showed that the system X can be total in measure but of
density zero.

Whether the system X can be used to approximate L2-functions has
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turned out to be closely associated with the size of the set
A = {te[0, 1]: xm () # O for infinitely many i}.

F. A. Talaljan [1972] showed that m(A4) = 1 is both necessary and sufficient
for the existence of a function f e I? whose X-Fourier series diverges a.e. On
the other hand, Gamlen and Gaudet [1973] proved that if m(A4) > 0, then
the closed linear span of X in Lf is isomorphic to I, 1 < p < oo, but if m(A)
= 0, then the closed linear span of X in L is isomorphic to I?, 1 < p < c0. It
is not known whether Talaljan’s result holds for p # 2 and it is an open
question what the closed linear span of X in L” is when p=1 or p= .
(P 1313)

Recall that a system {f], fz, .} is a basis in a Banach space B if given

f € B there is a unique series Z a,f, which converges to f in the norm of B.
=1

Kazarjan [1978] asked whether there exist bounded functions ¢ for which
OX = {PAmys PAmys---)

is a basis in I, 1 < p < o0. The answer seems to depend on the size of the
gaps in X. He showed that if m; = N+i, i > 1, for some fixed integer N, then
his question has an affirmative answer. He also obtained an affirmative
answer for certain cases where X has infinite gaps. A characterization of the
allowable gaps has not yet been established.

6. The Haar system as a basis. In addition to the results in the two
previous subsections, we have the following to report.

Krotov [1978] investigated the basis problem for the spaces H?. He
found that a necessary and sufficient condition that the Haar system be a
basis for H?, 1 < p < o0, is that there exist a constant C depending only on
p and o such that

4) S"M"Pw(@)<Cn Pw(m), O0<n<d<gl.
Recall that two bases {f, f,...} and {g,, g,,...} in a Banach spacc B
are equivalent if given coefficients a,, a,,... the series Z a,f, and Z Gngn

are equiconvergent. Ciesielski, Simon, and S;jolin [1977] proved that the
Haar and Franklin systems are equivalent bases in I?, 1 < p < c0. Sj6lin
[1977] showed that this equivalence does not hold for p=1. In a related
result, Ciesielski and Kwapien [1979] showed that the Haar shift operator is
not bounded in L.

7. The Haar system as an unconditional basis. Marcinkiewicz [1937]
proved that Haar—Fourier series of I’-functions converge unconditionally in
I?, 1 <p < oo. During the sixties a push was made to characterize those
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functions f e ! whose Haar-Fourier series converge unconditionally in L!-
norm. BalaSov [1971] came close when he established that a sufficient
condition for S[f] to converge unconditionally in L' is that feLlog™ L.
Recall (Garsia [1973]) that an fel' is said to belong to dyadic H' if
sup {|S,[f]l: n >0} is integrable on [0, 1]. Olevskii [1975], p. 76, observed
that the Burkholder-Davis inequality for martingales and known work by
Orlicz on unconditional convergence can be used to see that S[f] converges
unconditionally in L' if and only if f belongs to dyadic H'. The connection
with BalaSov’s theorem is simply this: a non-negative f belongs to dyadic H?
if and only if feLlog* L.

Gaposkin [1974] used martingale techniques to offer a simple, direct
proof of the Marcinkiewicz theorem cited in the first paragraph of this
subsection. He established, as an intermediate result, that the operator

Lf = Z M & (f) X
k=0

is of weak type (1, 1) for any choice of 5, = +1.

Krotov [1978] proved that a necessary and sufficient condition for the
Haar system to be an unconditional basis in H2, 1 < p < oo, is that there
exist a constant C depending only on p and @ such that (4) and the
inequality

n—1
Y P27 < C-2"P0 (27"
k=0
hold for n=1, 2,... The case where p =1 remains unexplored.

No work has been done using gap Haar series for unconditional bases.
However, even when considering quasi-bases the Haar system is not
unconditional in L!'. Shirey [1973] proved that, given a set E of positive
Lebesgue measure, the quasi-basis for L' (E) obtained by restricting the Haar
system to the set E is a conditional quasi-basis.

Tkebucava [1973] showed, under rather technical conditions on a
convex continuous function g and an f'e L', that any rearrangement T[f] of
the Haar-Fourier series of f satisfies

1
lim gg(f(t)— T.(f, t))dt = 0.
He also gives some information about unconditional convergence of Haar—
Fourier series in the spaces Llog?’L, p > 0.
Krancberg [1974] has shown that if there exists an fe L' such that a
rearrangement T [f] diverges on a set E, then there is a continuous function
¢ which satisfies the equality

sup|T, (o, t)) = for ae. teE.

nz1
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Tkebucava [1979] has examined unconditional convergence of multiple
Haar series in certain separable non-reflexive Orlicz spaces [%,. His
conclusion is that, under certain complicated conditions on @ (condition (x)),
the multiple Haar system fails to be an unconditional basis in the norm
of E.

8. Convergence of Haar series. A set E is said to be a %-set if it is the
countable intersection of nested sets G, > G, o ..., where each G, is itself a
countable union of intervals whose end-points are included only if those end-
points are dyadic rationals. Lunina [1976] surprised us all by showing that
such sets characterized sets of unbounded divergence for Haar series: given a
set E, there exists a Haar series S which satisfies

E = {t: limsup|S,(t)] = o}
if and only if E is a %;-set. She went on to obtain the following sharpening
of a result of Prohorenko (see Subsection 1). If E is a %,-set of measure zero,
then there exists a function f e L, 1 < p < o0, such that S[f] converges off E
but diverges unboundedly on E.

Pal and Schipp [1972] showed that if S is a Haar series whose partial
sums are non-negative on [0, 1], then §, converges a.e. as n— oo, and the
first integral of S is a Ciesielski series which converges off a countable set.
Moreover, such an S need not be a Haar-Fourier series. Thus the Steinhaus
conjecture is false for Haar series. Parallel results were obtained for Haar
series which satisfy ||S,||; = O(1) as n— cc.

Confirming the ever widening gap between pointwise convergence and
norm convergence, Davtjan and Talaljan [1975] proved that there exist a.e.

divergent Haar series S whose coefficients satisfy a, = 0(1/\/;), as n— oo,
such that given ¢ > 0 there is a set E of Lebesgue measure at least 1 —¢ for
which S, converges in the I?(E)-norm as n— oo.

It is well known that corresponding to each ae. finite measurable
function f there is a Haar series which converges a.e. to f(Talaljan [1960]). A
martingale proof of this result has been given by Davtjan [1976].

9. Summability of Haar series. The result of Talaljan cited in the
previous paragraph cannot be extended to arbitrary measurable functions.
Indeed, no Haar series can diverge to +0o0 on a set of positive measure
(Talaljan and Arutunjan [1965]).

Saginjan looked into the possibility that replacing convergence by
summability might remedy this malady. For Abel summability, he showed
[1974b] that given any measurable set E there is a Haar series summable a.e.
to +00 on E. However, for Cesaro summability, the original situation
prevailed. No Haar series is (C, 1)-summable to +o0o on a set of positive
measure (Saginjan [1974a]). The main building block of his proof is the

4 — Colloquium Mathematicum 52.2
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rather unexpected fact that, given a measurable E, a Haar series S whose
partial Cesaro sums satisfy the inequality
liminfo,(S, x) > —0 for xeE

actually converges to a finite measurable function a.e. on E. The same result
holds for all (C, a)-sums, o > —1, and all (H, k)-sums as well (Saginjan
[1973]). 1t follows that all (C, «)-methods of summability, « > —1, for Haar
series are equivalent at any given point.

Pogosjan [1980] announced results concerning divergence of the series

T= Z ‘YICXI?/\/ k+19
k=0

where y, =0, +1, and x§, x¥,... is any rearrangement of the Haar system. It
seems that for a large class of regular methods of summability one can
choose the numbers y, so that T is a.e. summable to + co. A consequence is
that if {n}2, is a subsequence of natural numbers which satisfies the
equality

limsupn; , /n; = oo,

i—x

then one can choose the numbers y, so that T, — o ae. as i — 00. On the

other hand, if n;, j/n; is bounded for all i, then T, cannot diverge to + o on
a set of positive measure.

A sequence of coefficients a,, a,,... is said to be block-order decreasing if
there exists a constant C > 1 such that

max J|a/<C min |aq|, n=1,2,...
2Pk <2ntl 2"~ 1gk<2n

Such coefficients were first considered by Uljanov [1963] as a generalization
of monotone decreasing coefficients. Ebralidze [1976] considers a
summability method

a0
In= Z RN.k Qy Ak»
k=0

where the sequence {Ry,] is block-order decreasing in the variable k
uniformly in N, and converges to 1 for all fixed kK as N — oo. He shows that
given a set E of the second category, if either

limsupty(x) <oo for xeE

N—-w
or

liminfty(x) > —o0 for xeE

N—-wo
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and if {a,};2, is itself block-order decreasing, then

Y lal/Jk < 0.
k=1

It follows that if

3l k= o,

then 7y is unbounded on any interval in [0, 1]. Since this method of
summation includes convergence of Haar series (use Ry, = 1), both results
cited above hold for Sy in place of 7u.

1V. HAAR-FOURIER COEFFICIENTS

10. Absolute convergence of series of Haar-Fourier coefficients. Ciesielski
and Musielak [1959] were first to identify conditions sufficient for
convergence of the series

©) S la (O
k=1

and

(6) S kg (f)-
k=1

For example, (5) converges for a fixed y <1 if

i k™2, (f, 1/k) < o

k=1

and (6) converges if
Y k2w, (f, 1/k) < oo.
k=1

When y =1, (5) converges if feLipa, 0 <a <1, or if f is of bounded p-
variation, 1 < p < 2. -

The problem of determining exact conditions for convergence of (5) and
(6) was almost closed by the extensive work of Uljanov and of Golubov
done in the sixties. Many of their results are best possible and can be
extended no further (see Golubov [1970] for an exposition). A unified
treatment of this problem was published by McLaughlin [1973] who
simultaneously considered the trigonometric, Walsh, Haar, and Franklin
systerhs. His results also extend those of Uljanov and Golubov to the
systems X (p,) of bounded type.
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One of Golubov’s theorems is that if fis of bounded p-variation, p > 1,
then (5) converges for y > 2p/(2+ p) and (6) converges for a < 1/p—1/2. In
the limiting case where y = 2p(2+p) and a = 1/p—1/2, he found a function
feLip(1/p) for which both (5) and (6) diverge. Canturija [1979] (announced
in [1974]) has generalized this theorem and improved the counterexample
from Lip(1/p) to H,, where w(5) = (log(1/8))~ /2~ 1/».

If f is absolutely continuous and non-constant, then (5) converges when
y > 2/3 and diverges when y < 2/3. In fact (see p. 21 of Bockarev [1978)), if f
is absolutely continuous, then

2n 1

lim 2"‘3”2“”"; |80, NN = 2“2’£|f'(t)l dr.

n—w

an
It follows that \/_27 Z |a,n +k(f )l converges to 3 Varf as n— oo and that
k=1

2n 1

lim ) la,,,, (NI*? =272 [|f @) dt
n—wk=1 (1}

both hold for any absolutely continuous f.

Uljanov [1978] investigated the Haar series analogue of Levy’s
theorem. Let A, denote those functions f which satisfy (5) for y = 1. Ul’janov
[1978] shows that if ¢ is bounded, then a necessary and sufficient condition
for ¢ (A,) = A, to hold is that ¢ e Lip 1. It follows that the class A, is closed
under products and that |f|*e A,, a = 1, when f € A4,. In the case where ¢ 1s
measurable but not Lip 1, Uljanov [1978] shows that there is a continuous
function f (0 < f< 1) such that feA, but ¢o(f)¢A4,.

Matveev [1974] investigated convergence of the series

2k+1_4

o > VE T a0
k=1 j=2

for continuous f. Let Q(f, §) denote the modulus of continuity associated
with the second difference, i.e.,

Q(f, 9) = supﬂ/(ro—zf (t‘ ;’2)+f(t2)
Matveev [1974] shows that if
i Q(f, 1/k) < ©
k=1

Dy, t2€[09 l]’ Itl ,—t2| < 5}-

for a periodic continuous f, then (7) converges. However, given ¢ > 0 there
exists a periodic continuous f such that

f k= Q(f, 1/k) < o
k=1
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but such that
2'& +1_ 1

IRVEID W)
k=1 j= 2k
diverges. .
For adjustment of functions to result in divergence of (5) see Subsec-
tion 4. For results on convergence of (6) for « = —1/2, where q,(f) has

been replaced by any monotone decreasing sequence of real numbers, see
Subsection 9.

Several results cited above go over to double Haar series. Kraczkowski
[1977] showed that if f is of bounded p-variation, then

i Y la;(f)?.< o0 for y>2p/p+2)

k=1j=1

and

Y Y ki)fla,;(f)l <o for a <1/p—1/2.

k=1j=1

Given a function f continuous on Q and two real numbers §,, 6, > 0,
we denote by w(f; J,, J,) the supremum, over |h| < §; and (x,, x,)eQ, of the
following three expressions:

|f (e +hyy x3)—f (x4, X2, . |f (%15 X2+ ha)=f (x4, x3)I,
|f (1 +hys X3+ ho)—f (X1, X+ ha)+f (x1 + by, x2) —f (x4, X3
A parallel situation defines w,(f; é,, ;) for fe [P(Q), 1 < p < c©0. The spaces
Lip(a,, a;) (respectively, Lip(a,, ®,; p)) consist of those functions f whose
moduli of continuity satisfy w(f; 8y, 8,) = 0(5;1832) (respectively,

w,(f; 8,1, 85) = 0(87' 83%). Szelmeczka [1974] proved that if f belongs to
Lip(ah az; p)a o; > Oa if ﬂl’ ﬂZ 2 0 and

cx,->ﬂii—l, i=1’ 2,
p 2

then

Y Y e (1P < .

k=1j=1
Kraczkowski [1978] has obtained conditions on w(f), w,(f) and the
variation of f sufficient to conclude that the series

ao

2 X kﬂ%fﬂz law,; NN e @A

k=1j=1
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is convergent for various choices of f; >0, 1>0, y>0. Included as
corollaries of his work are the following. Suppose that feLip(a,, «,; p).for
some p (1 < p < ). If a;, a; > 0, then the double Haar-Fourier series S[f]
converges absolutely on the unit square Q. But if ay, a, > 1/2, then

f: i Iak.j(f)l < 0.

k=1j=1
For other conditions sufficient to conclude that this series is finite, see
Gaimnazarov [1971].

11. Growth of Haar-Fourier coefficients. Ul'janov [1964b] showed that
if f is of bounded variation v on [0, 1], then

2n+1_1
(8) Y la ()
k=2n
is not greater than 3v/./2"*%, n=1, 2,... Horosko [1972] showed that
2n+l_1
&) | > &)
k=2n

is not greater than v/./2"*% n=1,2,..., and also estimated (8) and (9)
when feH,. He showed that (8) is dominated by
2"'!
2(3n=2)/2 | o@)dt
0

and that (9) is dominated by
2—(n+1)

22 [ w()dt.
0

The constants in all these inequalities are best possible.

Golubov [1964](") proved that a continuous function f belongs to Lipa
for some o (0 <a < 1) if and only if g, (f) =0k~ 1*"% as k - 0. Krotov
[1973], [1975] generalized this result as follows. If w is a modulus of
continuity which satisfies

(10) Y o2 =0(w(27") as n— oo,

k=n
then f belongs to H, if and only if
(11) a.(f) = 0 (k™ w(1/K)).
(*) The results mentioned in this paragraph were essentially proved by Z. Ciesielski in:

On Haar functions and on the Schauder basis of the space C {0, 1), Bull. Acad. Polon. Sci., Sér.
Sci. Math. Astronom. Phys., 7 (1959), p. 227-232. [Note of the Editors]
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The original results stated in [1973] were for w () = 0(6%) in place of (10).
However, there is an error in the proof of Lemma 1 of [1973] and, in fact,
that lemma is false.

A different type of generalization of Golubov’s characterization of Lipa
may be found in Splettstosser and Wagner [1977]. Here the idea that Lipa
has some connection with differentiability is reinforced. ,

Concerning double Haar-Fourier coefficients, the inequalities of
Horosko mentioned in the first paragraph of this subsection have been
established in two dimensions by Kraczkowski [1977]. Moreover, Skvorcov
[1973a] obtained the following analogue of the Riemann-Lebesgue lemma: If
S is a double Haar series whose rectangular sums S,,, converge, as m, n
— 00, at all points of a cross ({a} x[0, 1])u([0, 1] x {B}), where a, B are
dyadic irrationals, then a, ; x, () x;(f) —» 0 as k+j— co.

12. Monotone Haar-Fourier coefficients. Krotov [1973] showed that if
the Haar-Fourier coefficients of some continuous f were monotonically
decreasing to zero, then feLipl.

Golubov [1964] had shown that in order for the Haar-Fourier
coefficients of a continuously differentiable f to be monotone decreasing it is
necessary and sufficient that

(12)  f’ be non-decreasing and non-negative and 27 %% < f'(t)/f’(x) < 2%/2
for x, te[0, 1].

Moreover, these bounds are best possible. Krotov [1974] showed that the
Haar-Fourier coefficients of a continuous f are monotone decreasing if and
only if there exists a countable set Z such that f’ exists and is continuous off
Z with jumps of the first kind on Z, and such that (12) holds off Z.
Ebralidze [1979] found that if f is continuously differentiable but not
constant, then {a, (f)}< , is block-order monotone (see Subsection 9) if and

only if max |f'(x)) <C min |f'(x)] (C>=1). An n-dimensional version
. xe[0,1] . . xe[O.l]. .
of this result using partial derivatives was also announced.

13. Conditions sufficient to conclude that f is constant. Golubov [1964]
was the first to notice that Haar-Fourier coefficients of non-constant smooth
functions cannot decay too rapidly: if f is continuous and if a,(f) = o(k™%?)
as k — oo, then fis constant. A (Lipa)-version of this result was obtained by
Krotov ([1973], [1975]), who showed that if w satisfies (10) and if f is
continuous and satisfies the condition

lim o (f, d)/w(d) > O,
50

then a4, (f) = o(k™ "> w(1/k)), as k — oo, implies that f is constant. (In view of
(11), this result is sharp in the sense of order.) He also showed that this result
does not hold for arbitrary feH,,.
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BocCkarev [1969] has a nice result along these lines. If f is continuous
and if

Y Vkla(f) < o,
k=1

then f is constant. CagareiSvili [1971] announced that this result holds for
functions which are Darboux continuous as well. He has also shown [1976]
that if feLipa, 0 <a < 1, and if

a0
S la ()12 < oo,
k=1

then f is constant. The exponent 2a/(1+2a) is exact and a multiple Haar
series analogue of this result is also reported. Finally, if f is continuous on
the square and if both series

a0

Y Vkla;()l  and Y Jila ()
k=1 i=1
converge for j=1, 2,... and k=1, 2,..., then f is constant (CagareiSvili
[1970)).

For some rather technical conditions sufficient to conclude that f is
constant see [1979] by the author.

14. Multipliers. A sequence A = {4}, is said to be a multiplier from a
space of functions 4 to another space B if given any f € A4 there is an f,eB
such that

(13) Sfil= Z A (f) Xc-
k=0

The collection of multipliers from A to B is denoted by (A, B).

The first result on multipliers for Haar series was obtained by
Marcinkiewicz [1937], who showed that (L?, [’) =1® for 1 <p < oc. The
cases p =1 and p = oo remain unexplored, although Krotov [1977] showed
that (%, %) = {A: A, is constant for k > 2}.

For any sequence &, &,,... of real numbers denote by [/*(&,) those
sequences {4,] which satisfy 4, = O(&,) as k — oo; thus [®(1) = I®. For the
remainder of this paragraph, let H? denote the space H? where w(d) = 67
0€[0, 1], with 0 <a <1 and 1 < p < 0. Golubov [1972] proved that any
bounded sequence is a multiplier from H? to H? for 1 < p <o and 0 <«
< 1/p. Krotov [1977] obtained the converse of this result, thereby showing
in this case that I* = (HE, HE). In fact, he proved that

(14) (Hg, HY) = 1= {k=~F1la=lir}

holds for 1< p<qg<o and Bg<1. A complete characterization for
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(H?, HY) in the case p > g is not yet known, although Krotov includes many
partial results for these multipliers as well as for (HZ, L9).

V. UNIQUENESS

15. Uniqueness of convergent Haar series. Suppose that ¢, ¢,,... is a
sequence of finite-valued functions defined on some set F and let a,, a,,...
be a sequence .of real numbers. By the symbol g, = o(¢,(t)) as k — oo (where
t is some point in F) we mean that

111_2 ak/¢kj(t) =0,
where k,, k,,... are those indices ! which satisfy ¢,(t) # 0.

It is well known that, unless some kind of growth condition is imposed,
uniqueness does not hold for Haar series which are allowed to diverge at one
or more points. The most widely used such growth condition was identified
by Arutunjan and Talaljan [1964]. They showed that if S is a Haar series
whose coefficients satisfy the condition

(15) a, =0(x(?) as k— oo for every te[0, 1]
and if f is a finite-valued, (Lebesgue) integrable function such that
(16) lim S, (x) = (x)

j—o

for all but countably many xe[0, 1], where {n;};2, is any subsequence of
positive integers, then S is the Haar-Fourier series of f. (MuSegjan [1970]
generalized this result to the X (p,)-systems.)

When the full sequence of partial sums is used in place of (16), the result
of Arutunjan and Talaljan can be specialized in several directions. Arutunjan
[1966] showed that if S is a Haar series, whose coefficients satisfy (15), which
converges (off some countable set E) to a finite-valued Perron integrable
function f, then S is the Perron Haar-Fourier series of f. The growth
condition (15) cannot be relaxed at a single point where S diverges (see
Theorem 4 of McLaughlin and Price [1969]) but can be relaxed at any
dyadic irrational where S converges (see [1975] by the author).

Musegjan [1971] proved that if S is a Haar series which satisfies (15)
and if some rearrangement of S converges, off a countable set, to a finite-
valued bounded function f, then S is the Haar—Fourier series of f. It follows
that if S and T are Haar series whose coefficients satisfy (15) and if the same
rearrangement of S and T converges, off a countable set (to some finite-
valued function g), then S and T are the same series. MuSegjan [1978]
showed that this corollary need not hold if § is rearranged differently than T.
In fact, in a beautiful but complicated construction he finds two distinct
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Haar series S and T whose coefficients satisfy the condition g, = o(l/ﬁ) as
k — oo (stronger than (15)) and a finite-valued function g such that certain
rearrangements of S and T converge everywhere to g. It is still not known
whether MuSegjan’s [1971] result holds for some unbounded f.

If one assumes that f belongs to dyadic H! (see Subsection 7), then the
following result can be proved. If S is a Haar series which satisfies the
inequality

1 o
f( Z [szk_szk—l]z)llz <
0 k=1

and if the 2V-th partial sums of S converge, off a countable set, to £, then S is
the Haar—Fourier series of f (see [1980] by the author). The main benefit
here is that the pointwise condition (15) has been replaced with an integrated
growth condition which might be easier to use in applications.

For double Haar series, condition (15) has been generalized in three
different ways:

(17) a.; =0 xjW) as k+j— o0 for (1, u)eQ,
(18) &5 =0(u()1;(W) as k,j—co for (t,weQ,

and the iterated conditions

(19) a;=o(u(t)x;w) as k>0  for j =0, (t, ueQ,

(20) a.;j=0(u®xw)as j->o for k=0,(,ueQ.

Obviously, (17) contains (18) and (19){20) but (18) and (19){20) are
incomparable.

Skvorcov [1973b] proved that if the coefficients of a double Haar series
satisfy (17) and if the rectangular sums S, , converge as n, m — oo, for all but
countably many points in the unit square Q, to a finite-valued, Perron
integrable function f, then S is the double Perron Haar—Fourier series of f.
Ebralidze [1973] announced a parallel result for Lebesgue integrable f and
everywhere convergent Haar series whose coefficients satisfy (19) and (20).

Movsisjan [1976] obtained uniqueness for iterated sums of double Haar
series. Specifically, he proved that if {t,}X_, is a countable subset of [0, 1], if
for each integer j > 1 the series

(21) @;(t) = Z a,j X (2)
k=0
converges i’or t#t,, m=1,2,..., if

22 X 0,05,
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converges to zero off the vertical lines {t,} x[0, 1], m=1, 2,..., and if (19)
holds, then @, ; =0 for k, > 0. On the other hand, convergence of (22) in
the absence of convergence of (21) is not sufficient to conclude that g, ; =0
for k, j > 0, even under a stronger growth condition than (19) or (20). It is
not known whether uniqueness holds for iterated sums which converge to
integrable functions. (P 1314)

Uniqueness also holds for spherical sums. Skvorcov [1981] proved that
if S is a double Haar series whose coefficients satisfy (19) and (20), if Sg
converges to f as R— oo, except perhaps on countably many crosses
({tm} x[0, 1) U ([O, 1] x {u,,}), where f is a finite-valued, Perron integrable
function, then S is the Perron Haar-Fourier series of f. This theorem was
generalized by Movsisjan [1977] who had obtained uniqueness for bounded f.

Movsisjan [1974] has also studied uniqueness for subsequences of the
rectangular partial sums. He proved that if S is a double Haar series
satisfying (19) and (20), and if S,,j,,,,k converges as j, k — 00, except perhaps on
a countable subset of Q, to a finite-valued integrable f, then S is the double
Haar-Fourier series of f.

16. Uniqueness of summable Haar series. Skvorcov [1971] first
considered uniqueness for summable Haar series. Let 7,(S) denote the n-th
partial sum of a Haar series S with respect to some Toeplitz method of
summation with positive matrix. He showed that if

liminfz,(S) <f< lim supz,(S)

on [0, 1], where f is a finite-valued, Perron integrable function, and if (15) is
satisfied by the coefficients of S, then S is the Perron Haar-Fourier series of f.
When the method of summation also has a positive finite-row matrix, he
proved the following for rearrangements of Haar series. If § is any
rearrangement of a Haar series whose coefficients satisfy (15) and if 7,(S) — 0
as n— oo, then S is the zero series.

The author [1971], [1973] has studied uniqueness of (C, 1)-summable
Haar series. For example, if a,,j(S) converges in measure, as j — o0, to an

integrable function f, if the coefficients of S satisfy (15), and if

lim supla,,j(S, X)| < o
j—w®
for all but countably many xe[0, 1], then S is the Haar—Fourier series of f.
No work has been done on uniqueness of summable double Haar series.

17. Sets of uniqueness. A set E = [0, 1] is called a set of uniqueness (for
Haar series) if the only Haar series S which converges to zero off E is the
zero series. It is known that the empty set is a set of uniqueness for Haar
series, but that no non-empty set is (see McLaughlin and Price [1969]). Thus
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sets of uniqueness are studied for various classes of Haar series, segregated
according to growth conditions on their coefficients.

As reported in Subsection 15, any countable set is a set of uniqueness
for Haar series whose coefficients satisfy (15). MuSegjan [1967] showed that
for Borel sets this result is best possible. Indeed, he proved that, given a set
E, a necessary and sufficient condition that E be a set of uniqueness for the
class of Haar series satisfying (15) is that E contain no non-empty perfect
sets. In a latter paper [1969] he constructed perfect non-empty sets of
uniqueness for the class of Haar series whose coefficients satisfy the condition

a1, (O] < 40 for all te[0, 1],

where k; <k, < ... are those indices [ for which x,(¢) # 0, and ¢,, ¢,,... is
.a fixed sequence of positive measurable functions which converges
everywhere to zero on [0, 1].

The author [1977] has examined sets of uniqueness for Haar series
satisfying certain growth conditions G (p), —c0 < p < oo, which in the case p
= 2 are order equivalent to but slightly stronger than (15). From MusSegjan’s
work it follows that Borel sets of uniqueness for the condition G(2) are
countable, and that there are non-empty perfect sets of uniqueness for the
condition G(p) when p < 2. The author showed that a countable union of
closed sets of uniqueness for the condition G(p), p >0, is again a set of
uniqueness for G(p). He also proved that sets of uniqueness for G(0) can
have positive measure. ’

Skvorcov [1973] first systematically studied sets of uniqueness for
multiple Haar series. As in the one-dimensional case, the only set of
uniqueness for Haar series is the empty set, and some growth condition must
be used to get non-trivial sets of uniqueness. He proved that, given a set
E = Q, a necessary and sufficient condition for E to be a set of uniqueness
for the class of Haar series which satisfies (17) is that E contain no perfect set
which intersects the diagonal of Q. He also announced that, for condition
(18), E is a set of uniqueness if and only if E contains no non-empty perfect
subset. It follows that a Borel set E is a set of uniqueness for Haar series
which satisfy (18) if and only if E is countable.

18. Null series. A Haar series which converges to zero a.e. but not
everywhere is called a null series. Clearly, many of the results cited in
Subsections 15 and 17 are concerned with null series. In this section we
report two specific results due to Skvorcov.

In [1977] he considers how slowly the coefficients of a null series can
diminish to zero. He shows that given any positive monotone decreasing
sequence w, which satisfies the condition

ao
Y @} =00
k=1



THEORY OF HAAR SERIES 233

ao
there exists a null series ) a,x, whose coefficients satisfy 0 < a, < w, for

k=0
k> 0.

Finally, in [1980] he constructs a non-zero double Haar series whose
coefficients satisfy (17) such that given any (x, y)eQ there exist sequences
{n;};2, and {m;}2,, depending on (x, y), for which

i 5,1, (3, 3) = 0.
Thus unlike the one-dimensional case, uniqueness does not hold for double

Haar series which converge through different subsequences as one moves
from point to point.
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