Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Cover of the book
Tytuł książki

A decomposition of $E^3$ into straight arcs and singletons

Seria

Rozprawy Matematyczne tom/nr w serii: 73 wydano: 1970

Zawartość

Warianty tytułu

Abstrakty

EN

CONTENTS
1. Introduction............................................................................................................................................. 5
2. Notation and. terminology................................................................................................................... 6
3. Description of G.................................................................................................................................... 6
4. Preliminaries to the main result........................................................................................................ 13
5. The main result..................................................................................................................................... 15
6. Lemmas on Property X......................................................................................................................... 16
7. Construction of certain open sets...................................................................................................... 20
8. Constructing homotopy centerlines.................................................................................................. 24
9. Patterns on the sides of Δ.................................................................................................................. 28
10. The AB-condition................................................................................................................................. 30
11. Types of simple closed curves......................................................................................................... 32
12. Similar patterns................................................................................................................................... 36
13. Property II.............................................................................................................................................. 40
14. Construction of homotopy-$h[Γ_α]'s$............................................................................................. 42
15. Proof of Lemma 3................................................................................................................................ 45
References.................................................................................................................................................. 46

Słowa kluczowe

Tematy

Miejsce publikacji

Warszawa

Copyright

Seria

Rozprawy Matematyczne tom/nr w serii: 73

Liczba stron

46

Liczba rozdzia³ów

Opis fizyczny

Dissertationes Mathematicae, Tom LXXIII

Daty

wydano
1970

Twórcy

  • The University of Iowa, Iowa City, Iowa

Bibliografia

  • [1] S. Armentrout, Decompositions of $E^3$ with a compact O-dimensional set of nondegenerate elements, Trans. Amer. Math. Soc. 123 (1966), pp. 165-177.
  • [2] S. Armentrout, A three-dimensional spheroidal space which is not a sphere (to appear).
  • [3] R. H. Bing, What topology is here to stayl, Summary of Lectures and. Seminars, Summer Institute on Set Theoretic Topology, University of Wisconsin, 1955 (revised (1958)), pp. 25-27.
  • [4] R. H. Bing, Upper semicontinuous decompositions of $E^3$, Ann. of Math. 65 (1957), pp. 363-374.
  • [5] R. H. Bing, A decomposition of $E^3$ into points and tame arcs such that the decomposition space is topologically different from $E^3$, Ann. of Math. 65 (1957), pp. 484-500.
  • [6] R. H. Bing, Point-like decompositions of $E^3$, Fund. Math. 50 (1962), pp. 431-453.
  • [7] A. J. Boals, Two separation theorems for compact sets (to appear).
  • [8] L. O. Cannon, On a point-segment decomposition of $E^3$ defined by McAuley, Notices Amer. Math. Soc. 14 (1967), p. 91.
  • [9] L. F. McAuley, Some upper semicontinuous decompositions of $E^3$ into $E^3$, Ann. of Math. 73 (1961), pp. 437-457.
  • [10] L. F. McAuley, Another decomposition of $E^3$ into points and intervals, Topology Seminar Wisconsin, 1965, Princeton University Press, 1966, pp. 33—51.
  • [11] R. L. Moore, Foundations of Point Set Theory, Amer. Math. Soc. Colloquium Publications, vol 13 (rev. ed.), Providence 1962.
  • [12] R. B. Sher, Toroidal decompositions of $E^3$, Fund. Math. 61 (1968), pp. 225-241.

Języki publikacji

EN

Uwagi

Identyfikator YADDA

bwmeta1.element.desklight-a6d0c17b-eb73-4f18-8095-0eff0cd8ef51

Identyfikatory

Kolekcja

DML-PL
Zawartość książki

rozwiń roczniki

JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.