CONTENTS 1. Introduction............................................................................................................................................. 5 2. Notation and. terminology................................................................................................................... 6 3. Description of G.................................................................................................................................... 6 4. Preliminaries to the main result........................................................................................................ 13 5. The main result..................................................................................................................................... 15 6. Lemmas on Property X......................................................................................................................... 16 7. Construction of certain open sets...................................................................................................... 20 8. Constructing homotopy centerlines.................................................................................................. 24 9. Patterns on the sides of Δ.................................................................................................................. 28 10. The AB-condition................................................................................................................................. 30 11. Types of simple closed curves......................................................................................................... 32 12. Similar patterns................................................................................................................................... 36 13. Property II.............................................................................................................................................. 40 14. Construction of homotopy-$h[Γ_α]'s$............................................................................................. 42 15. Proof of Lemma 3................................................................................................................................ 45 References.................................................................................................................................................. 46
[1] S. Armentrout, Decompositions of $E^3$ with a compact O-dimensional set of nondegenerate elements, Trans. Amer. Math. Soc. 123 (1966), pp. 165-177.
[2] S. Armentrout, A three-dimensional spheroidal space which is not a sphere (to appear).
[3] R. H. Bing, What topology is here to stayl, Summary of Lectures and. Seminars, Summer Institute on Set Theoretic Topology, University of Wisconsin, 1955 (revised (1958)), pp. 25-27.
[4] R. H. Bing, Upper semicontinuous decompositions of $E^3$, Ann. of Math. 65 (1957), pp. 363-374.
[5] R. H. Bing, A decomposition of $E^3$ into points and tame arcs such that the decomposition space is topologically different from $E^3$, Ann. of Math. 65 (1957), pp. 484-500.
[6] R. H. Bing, Point-like decompositions of $E^3$, Fund. Math. 50 (1962), pp. 431-453.
[7] A. J. Boals, Two separation theorems for compact sets (to appear).
[8] L. O. Cannon, On a point-segment decomposition of $E^3$ defined by McAuley, Notices Amer. Math. Soc. 14 (1967), p. 91.
[9] L. F. McAuley, Some upper semicontinuous decompositions of $E^3$ into $E^3$, Ann. of Math. 73 (1961), pp. 437-457.
[10] L. F. McAuley, Another decomposition of $E^3$ into points and intervals, Topology Seminar Wisconsin, 1965, Princeton University Press, 1966, pp. 33—51.
[11] R. L. Moore, Foundations of Point Set Theory, Amer. Math. Soc. Colloquium Publications, vol 13 (rev. ed.), Providence 1962.
[12] R. B. Sher, Toroidal decompositions of $E^3$, Fund. Math. 61 (1968), pp. 225-241.