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On isomorphisms between fibrations over T*
associated with a T* action

by MicHAL SAapowskl (Gdansk)

Abstract. Let M be a closed manifold with a given action of a k-dimensional torus T* on it.
Let ev,: m,(T* 1)~ =,(M, x) be the homomorphism induced by ev: T*at—txe M. For a fixed
monomorphism A: n, (T*) - n, (T*) let F(4) denote the set of all smooth T*.equivariant fibrations p:
M - T* such that p_oev, = 4. We show that two fibrations p, g€ F(1) such that im[p,~g,] < im2
are equivariantly isomorphic. This implies that there are no more than (card(nl(T")/im).))h'(M)-i
isomorphism classes of fibrations belonging to F(1), where b, (M) is the first Betti number of M. We
also prove the affine version and the holomorphic version of this result.

Introduction. Let M be a closed T manifold. In this paper we investigate
when two T*-equivariant (see Definition 1.1) fibrations p, q¢: M —T* are
equivariantly isomorphic.

T*-equivariant fibrations over T* arise naturally in the following situa-
tions. First, a fibration over T* having finite structure group can be treated as
a T*-equivariant fibration with respect to some T* action on T* (see Remark
1.1). Next, any homomorphism A: n,(M)- n,(T* such that Aoev,:
n,(T*) > n,(T*) is a monomorphism (where ev,: =, (T* 1)>=,(M, x) is in-
duced by ev: T*st—txeM) can be lifted to a T*-equivariant fibration p:
M — T* (see e.g. [12, Theorem 1], see also [3, Theorem 4.2], [13, §2]).

We start with the discussion of one of the main results of the paper for
k=1. Let p, g¢ M—S' be two equivariantly isomorphic S'-equivariant
fibrations. It is clear that |p,(0)| = |q,(0)l, where oen, (M) is the homotopy
class of the orbit of the base point of M and p,, q,: 7, (M) —n,(S') 2 Z are the
induced homomorphisms. We say that the number |p, ()| is the order of p. It is
an important invariant of p (see Remark 1.3). As the order of an §'-equivariant
fibration can be arbitrarily large it is only reasonable to ask how many
nonisomorphic fibrations of a given order m there can be. We shall prove that
two S'-equivariant fibrations p, g: M - S such that P, (o) =lq,(0)] = m and
im[p,—q,: 7, (M)~ n,(S') ~ Z] = mZ are equivariantly isomorphic. In par-
ticular, there are no more than [m|®*™)~! nonisomorphic fibrations of a given
order m (see Corollary 1.1). A more general result can be stated as follows.

THEOREM 1.1. Let p, g: M — T* be two fibrations associated with a smooth
T* action on a closed manifold M. If p,oev, =q,0ev, and im[p,—q,]
S imp,oev,, then there is a T*-equivariant diffeomorphism f: M — M such that
pof =gq.
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The holomorphic and affine variants of Theorem 1.1 are discussed in
Section 2. Proposition 2.2 allows one to estimate the number of inequivalent
Calabi’s reductions of the same order of a given flat manifold M (cf. Remark
2.2).

If M is a closed homologically injective $' manifold then Theorem 1.1
implies that appropriate ‘automorphisms of m; (M) can be lifted to- diffeomor-
phisms so that Diff(M) has infinitely many connected components (see
Corollary 1.2). Note that the problem when a given automorphism of the
fundamental group can be lifted to a diffeomorphism was solved for some
special (mainly aspherical) manifolds only (as hyperbolic manifolds [10], [11],
infranilmanifolds [8], some 3-manifolds [5], [15]). The holomorphic .variant of
Corollary 1.2 can be derived from Theorem 2.1.

A concrete example is studied in Section' 5. We show that there are two
nonisomorphic fibrations p, g: Kx S!' —S* of order 2 on the product of the
Klein bottle K by §'. This example is simpler and more natural than the earlier
known ones (cf. [14]).

The following notation will be used. The letter I will denote the canonical
identification of the fundamental group with the corresponding deck group.
If M is a manifold, then M will denote the universal covering space of M, and
I’ the deck group of M. If G is a group, g,,...,4,€G, then {g,, ...,g,> will
denote the subgroup of G generated by g,, ...,g,, and Z(G) the center of G. By
H,(I') we will denote I'/[I", I'] ~ H,(M). The symbol FH,(M) (or FH (')
stands for H,(M) divided by its torsion subgroup and =: H,(M)— FH,(M) is
the canonical projection. Note that FH,(M) is isomorphic to Z*'™), where
b,(M) is the first Betti number of M.

1. On isomorphisms between fibrations associated with a smooth torus
action. The aim of this section is to prove Theorem 1.1.

DerFINITION 1.1. Let p: M — T* be a fibration on a smooth T* manifold M.
The fibration p is T*-equivariant if p(tx)p(x)~' depends on teT* only.
A T*-equivariant fibration p: M — T* is associated with the T* action if p, oev,,
is a monomorphism. '

Remark 1.1.'(a) The fibration p will be T*-equivariant in the usual
meaning if we take the T* action T*x T*a(t, u)—p(tx,)ue T* (where
xoep~ (1)) on T |

(b) Let g: M - T* be a smooth fibration. Then there is a T* action on
M such that q is associated with this action iff the structure group of q can be
reduced to a finite group (see e.g. [12, § 2]; see also the proof of Theorem 1B in

[16]).

Under the canonical identification I of ; (M, x) with the deck group I' the
homotopy class of the orbit cexn, (M, x) of an §* action ¢,;: M~ M, te[0, 1],
corresponds to the deck transformation @, eI, Recall that an element yel is
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identified with ¢ e, (M, x), where y' is represented by the projection of any
curve d: [0, 11— M such that d(0) = %, d(1) = y(%). Here X is a point above x.
For every teR the group I' commutes with ¢,, because @, = id commutes with
the discrete group I'. In particular, ¢,eZ(I') and oeZ(n,(M)).

Let f: X — Y be a continuous map, let X, ¥ denote the universal covering
spaces of X and Y, let I'; denote the deck group of X, and let f: X — ¥ be a map
covering f. For any xeX, yeI', we have

(1) JOx) = If, (I )] ).

Proof of Theorem 1.1. Let ¢;: M —M, te T", be the T* action on
M and let ¢,: M — M, te R, be the R* action covering the T* action. Identify
T* with R/B, where B is a lattice in R¥, and denote I(imp,oev,) < B by A. Let
§, §: M-—-R* be the fibrations covering p and g respectively. We have
p,0ev, =g,oev,. Using this and the T*-equivariance of p and q it is easy to
verify that
(2) B(@(x))—B(x) = h(t) = §(#.(x))—q(x)
for teR¥, xe M, and for some linear map h: R*— R*, Tt is also easy to see that
h(B) = A. Since p,oev, is a monomorphism, h is an isomorphism and
h~1(A) = B. Consider now f§: M3x—h~*(g(x)—p(x))e R*. Applying (1) and
the assumption that im[p,—gq,] Simp oev, we have

Blyx)—B(x) = h™* (I, (I"* @)~ Ip, (I~ *())eh™"(4) = B

for every yeT It follows that there is a map f: M — T* covered by f. By (2),
fo@, = f for teR* so that

(3) Bop,=p for te Tk
Consider f, g: M- M given by
(4) S (x) = @px(x), g(x) = P - pe)(X)-

Then fog = gof=1id,, so that fis a T*-equivariant diffefomorphism. By (2),
B($im (%) = p(x) +h(B(x)) = §(x) and accordingly pof = g. This finishes the
proof of Theorem 1.1.

COROLLARY 1.1. Let y: Z*¥— Z* be a given monomorphism. There are no
more than (card(Z*/imy))**™ =% jsomorphism classes of fibrations p: M~ T*
satisfying p,oev, =y that are associated with a given T* action on M.

Proof. We give the proof for k = 1 only leaving the verification of the
general case to the reader. Every homomorphism oa: n,(M)— =, (S') factors
through FH,(M)~ Z*™ so that there is a canonical isomorphism
HOM(z,(M), Z) ~ HOM(Z"'™), Z). Let Y(¢) = m and let E(m) denote the set
of all epimorphisms A: FH,(M)— Z such that A(s) = m. Let s = b,(M)—1 and
let FH (M) = Z x Z* be a fixed direct sum decomposition such that the image
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of ¢ in FH, (M) is contained in Z. Consider the equivalence relation ~ on E(m)
defined by the requirement that A, ~ 4, if and only if im[A, —4,] = mZ. By
Theorem 1.1 we have no more isomorphism classes of our fibrations than the
elements of E(m)/~ < Z*/mZ°. This completes the proof of Corollary 1.1.

Remark 1.2. Let p, g: M—>S* be two S'-equivariant fibrations and let
cen,; (M) be the homotopy class of the orbit. Assume that p, (o) = q,(0) = m,
im[p,—q,] SmZ and p(x,) = q(x,). Let § and f be as above. Then

(5) [, () =%y  for every yen, (M).

This equality can be verified as follows. Consider the diffeomorphism f:
M — M given by f(z) = @3, (2). For the notational convenience the same letter
will denote an element of the fundamental group and the corrésponding deck
transformation. Let yen,(M). By (1), B(y(2)) = B(z) + B, (»). As &, commutes
with I' it follows that

J@2) = (B0 Py V) (@) = (@5 Gpi)(2) = (5 9) (] (2)).

But @,el’ is canonically identified with ¢ (see above). By (1) again,
(y2) = £, (3)(f(2)). Hence f, (y) = a’"y, which is our claim.
J42) =1, .

Remark 1.3. Let p: M — S! be an $'-equivariant fibration of order r. One
can check (for details we refer to [12]).that an r-fold covering space of M is
equivariantly diffeomorphic to F x S*, where F is a fiber of p.

Let M be a homologically injective S' manifold. This megns that
ev,: H (T)- H{(M) is a monomorphism. If b;(M) > 1, then the argument
given in the proof of Corollary 1.1 shows that we have two different
homomorphisms 4, y: n,(M, x;)»Z such that m = A(6) = u(s) #0 and
im{A—u] = mZ, where ¢ is as above. By [12, Theorem 1.1], there are
S'-equivariant fibrations p, q: M —>S' such that p, =4, ¢q,=p and
p(xo) = q(x,). According to Theorem 1.1 there is a difffomorphism f: M —+M
such that po f=g. We have f,(y) = ¢?"y for yen, (M) (see Remark 1.2) so
that from the nontriviality of f, it follows that the homomorphism
k—f¥eAut(n,(M, x,)) is a monomorphism. This shows the following.

COROLLARY 1.2, Let M be a closed manifold that admits a homologically
injective S* action and let b, (M) > 1. Then the group of all diffeomorphisms of
M has infinitely many connected components.

2. The affine case and the holomorphic case. In this section the same
notation as in Section 1 will be used. The first result we want to prove is the
holomorphic variant of Theorem 1.1.

THEOREM 2.1. Let p,q: M —T?" be two T?"-equivariant holomorphic
fibrations associated with a homologically injective holomorphic torus action on
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a complex manifold M. Assume that p,oev, =q,o0ev, and im[p ,—q,]
< imp,oev,. Then there is a b:holomorphtc and Tz"-equwanant mapf- M —-M
such that pof = q.

Proof. Let h, ¢,, B, B, h, f be as in the proof of Theorem 1.1. We have
f = pof, where p': Max—(f(x), )ETz"xM, p: T2 x Ma(t, x)~ @,(x)e M.
It suffices to check that the map f = h™!(§—p) is holomorphic. This follows
from the assumption that p and g are holomorphic and from the equality
h(t) = p(P,(xo))— B(x,), Where x, is a point of M.

Remark 2.1. The question of the existence of a holomorphic fibration
that is associated with a holomorphic torus action was considered in [1], [2],

[9].

Before we state the next result we need some definitions. By a parallel flow
on a manifold M we mean a flow generated by a parallel vector field. A T*
action on M is parallel if each flow induced by the action of a one-parameter
subgroup of T* is parallel. Every isometric T* action on a nonpositive
curvature manifold is parallel (see e.g. [6, Corollary 4.2]). An argument similar
to that given in the proof of Theorem 2.1 shows the following.

THEOREM 2.2. Let M be a closed manifold, let V be a connection on M, and
let ¥, be the standard flat connection on T*. Let p, q: M, VT V, be two
T*-equivariant affine fibrations associated with a parallel T* action, on M. If
p.oev, = q,0¢v, and im[p,—q,] S imp, oev,, then there is an affine and
T*-equivariant diffeomorphism f such that pof =gq.

Remark 2.2. If M is a closed flat manifold such that b,(M) > 0, then
there is an isometric S! action on M (see e.g. [4,7]). Every epimorphism 4:
7, (M)— Z can be lifted to an affine S*-equivariant fibration p: M —S*. The
resulting splitting of M is said to be Calabi’s reduction of M (cf. [17, Theorem
3.6.3], [13]). There are infinitely many Calabi’s reductions of M. However, if we
fix the order r, then we have no more than r’*™~! of them.

3. An example. In this section we show how the results of the paper can
help to classify associated fibrations of a fixed order m on a given S! manifold
M. We consider the simplest nontrivial example when M is the product of the
Klein bottle K by S* and m = 2.

First we define an appropriate affine S* action on M. In order to do that
recall that K can be represented as R*/I";, where I'; is the subgroup of the
isometry group of R? generated by a(x, y) = (x+1, y), b(x, y) = (~x, y+3%).
Then the one-parameter group of translations y/,;: R - R2, {(x, y) = (x, t+ ),
commutes with I', and consequently determines an S! action y,; K—-K,
te[0, 1]. We have , = b* and [a, b] = a*.

Consider M = K x S! with the §! action ¢, = ¥, x idy,. It is obvious that
@, = (b xidg)> The group =, (M) is generated by a, ber, (K) corresponding to
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a and b and by the generator u of n,(S"). If u,, b, are the images of u and b in
FH, (M), then FH{(M) = (b, uyy. By Corollary 1.1 we have no more than
two nonisomorphic fibrations of order 2 that are associated with the action ¢,.

Take the projections 4,, 4,: FH,(M)— (b,) induced by the direct sum
decompositions FH, (M) = (by) @ {uy) and FH,(M) = {b,) ® (b, +1u,). The
homomorphisms y,, y,: 7, (M)—<by» = Z induced by 4,, 4, can be lifted to
S!-equivariant fibrations p, g: M —» S*. Let n: n,(M)— FH (M) be the canoni-
cal projection. Then 7~ *({u,) is the fundamental group of a fiber of p and
n~1({uy+ byy) is the fundamental group of a fiber of g.

As u and a commute it follows that n~1((uy)) = (u, @) ~ Z@Z and
accordingly the fibers of p are diffeomorphic to T2 The group
1~ 1({bo+uy)) = {bu, a) is not abelian. Hence the fibers of p are not even
homotopy equivalent to the fibers of g. Note that (bu)?> = @, u commutes with
a and consequently the fibers of g are diffeomorphic to the Klein bottle.
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