FUNCTIONAL CONTINUITY
OF COMMUTATIVE \(m \)-CONVEX \(B_0 \)-ALGEBRAS
WITH COUNTABLE MAXIMAL IDEAL SPACES

BY

W. ŻELAZKO (WARSZAWA)

All algebras in this paper are commutative algebras over the field of complex numbers. A \(B_0 \)-algebra is a locally convex completely metrizable topological algebra. The topology of such an algebra \(A \) can be given by means of an increasing sequence of seminorms

\[
\|x\|_1 \leq \|x\|_2 \leq \ldots
\]

for all elements \(x \) in \(A \). The requirement of joint continuity of multiplication in a topological algebra means that the seminorms (1) can be chosen so that

\[
\|xy\|_i \leq \|x\|_{i+1} \|y\|_{i+1}
\]

for \(i = 1, 2, \ldots \), and all elements \(x \) and \(y \) in \(A \).

A \(B_0 \)-algebra is said to be \textit{locally multiplicatively-convex algebra} (shortly an \textit{\(m \)-convex algebra}) if instead of (2) we have stronger relations

\[
\|xy\|_i \leq \|x\|_i \|y\|_i
\]

for all elements \(x, y \in A \), \(i = 1, 2, \ldots \). In case when the algebra in question possesses the unit element \(e \), the seminorms satisfying (1) and (3) can be so chosen that they also satisfy

\[
\|e\|_i = 1
\]

for all natural \(i \). The \(m \)-convex \(B_0 \)-algebras are also called \textit{Fréchet algebras}. These algebras were introduced and studied in [1] and [5]. One of basic questions posed in [5] (Question 1, p. 50), considered also by S. Mazur, asks whether in a commutative \(m \)-convex \(B_0 \)-algebra \(A \) all its multiplicative-linear functionals are automatically continuous. This problem, still unsolved, called attention of many authors. For an up to day bibliography the reader is referred to the book [3] devoted to this subject. The topological algebras in which all multiplicative-linear functionals must be automatically continuous are called by Michael \textit{functionally continuous}. Since there is a one-to-one
correspondence between multiplicative-linear functionals and maximal modular ideals, of codimension one, given by \(f \mapsto \ker f \). the problem of functional continuity of \(m \)-convex \(B_0 \)-algebras is equivalent to the question whether in such algebras all such ideals are closed. We denote by \(\mathfrak{M}(A) \) the maximal ideal space of \(A \), i.e. the set of all its closed maximal modular ideals, or all its continuous multiplicative-linear functionals provided with the Gelfand topology. We also denote by \(\mathfrak{M}^*(A) \) the space of all maximal modular ideals of codimension one (multiplicative-linear functionals) in \(A \). If \(A \) is a \(Q \)-algebra, i.e. the algebra with open set of invertible elements in case when \(A \) possesses the unit element, or open set of quasi-invertible elements in general, then all its maximal modular ideals are closed and of codimension one, provided the algebra in question is a \(B_0 \)-algebra. Otherwise, as we showed in [6] there are always maximal ideals which are of infinite codimension and dense in \(A \). The strongest result on the problem of functional continuity of \(m \)-convex \(B_0 \)-algebras seems to be the result of Arens [2] stating that if such an algebra is finitely generated (i.e. there is a finite number of elements in \(A \) (the system of generators) such that the algebra of all polynomials in these elements is dense) then it is functionally continuous. We shall need this result in the following form:

Theorem A. Let \(A \) be a commutative complex \(m \)-convex \(B_0 \)-algebra and let \(F \in \mathfrak{M}^*(A) \). Then for each finite number of elements \(x_1, x_2, \ldots, x_n \in A \) there is a functional \(f \) in \(\mathfrak{M}(A) \) such that

\[
F(x_i) = f(x_i)
\]

for \(i = 1, 2, \ldots, n \).

Using this result we prove in this paper that if the maximal ideal space \(\mathfrak{M}(A) \) of a commutative \(m \)-convex \(B_0 \)-algebra \(A \) is at most countable, then \(A \) is a functionally continuous algebra. As a corollary we obtain a result of Husain and Liang [4] stating that commutative \(m \)-convex \(B_0 \)-algebras with orthogonal Schauder bases are functionally continuous. Our result reads as follows.

Theorem. Let \(A \) be a commutative \(m \)-convex \(B_0 \)-algebra with at most countable maximal ideal space. Then all multiplicative linear functionals in \(A \) are continuous.

Proof. Without loss of generality we can assume that the algebra \(A \) possesses the unit element \(e \). Otherwise we could consider the algebra \(A_1 \), obtained from \(A \) by adjoining the unit \(e \). It is the direct sum \(A_1 = A \oplus C e \) provided with seminorms given by the formula \(\| x + \lambda e \| = \| x \|_n + |\lambda | \) for \(x \in A \) and \(\lambda \in C \). All elements in \(\mathfrak{M}^*(A) \) extend to elements of \(\mathfrak{M}^*(A_1) \) by setting \(f(x + \lambda e) = f(x) + \lambda \). Also the cardinality of \(\mathfrak{M}(A_1) \) is the same as that of \(\mathfrak{M}(A) \). We can also assume that the space \(\mathfrak{M}(A) \) is infinite, otherwise, by Theorem 13.6 in [5], \(A \) is a \(Q \)-algebra and the conclusion follows.
Let then $\mathcal{M}(A) = \{f_1, f_2, \ldots\}$. We shall construct an element z in A such that

\begin{equation}
 f_i(z) \neq f_j(z)
\end{equation}

for all natural $i \neq j$. To this end observe that for each natural k there is an element $y_k \in A$ such that

\begin{equation}
 f_i(y_k) = 0
\end{equation}

for $i < k$, and

\begin{equation}
 f_k(y_k) = 1
\end{equation}

for all indices k. In fact, for a given natural m and n, $m \neq n$, we can find an element x in A such that

\[x = f_m(x) \neq f_n(x) = \beta. \]

Setting

\[y_{m,n} = \frac{x - \alpha e}{\beta - \alpha} \]

we have $f_m(y_{m,n}) = 0$ and $f_n(y_{m,n}) = 1$. Finally setting $y_k = \prod_{i < k} y_{i,k}$ we obtain an element satisfying relations (7) and (8).

We shall construct inductively a sequence $\{z_n\}$ of elements of A satisfying

\begin{equation}
 f_k(z_m) = f_k(z_n)
\end{equation}

for all indices k, m, n satisfying $k \leq m \leq n$;

\begin{equation}
 f_k(z_n) \neq f_l(z_n)
\end{equation}

for all indices k, l, n satisfying $k, l \leq n$;

\begin{equation}
 \|z_{n+1} - z_n\| \leq 2^{-n}
\end{equation}

for all natural n. To this end we put $z_1 = 0$ and assuming that we have already constructed elements z_1, z_2, \ldots, z_n satisfying relations (9), (10), (11) we construct the element z_{n+1} in the following way. If $f_{n+1}(z_n) \neq f_k(z_n)$ for all $k \leq n$ we simply put $z_{n+1} = z_n$. If $f_{n+1}(z_n) = f_k(z_n)$ for some $k \leq n$ we put $z_{n+1} = z_n + \alpha y_{n+1}$, where the complex scalar α is chosen so that $f_{n+1}(z_{n+1}) = f_{n+1}(z_n) + \alpha \neq f_l(z_n)$ for all $i \leq n$, and $|\alpha| \cdot \|y_{n+1}\| \leq 2^{-n}$. The relations (4), (7) and (8) now show that we have (9), (10), and (11) for all involved indices not greater than $n+1$. The induction follows. The relation (11) and the completeness of A imply that the sequence $\{z_n\}$ converges in A. Define $z = \lim z_n$. By (9) we have $f_k(z_m) = f_k(z)$ for $k \leq m$ and thus the relation (10) implies the relation (6). Assume now in (5) $n = 2$, $x_1 = z$ and $x_2 = x$.

arbitrary element in A. Relation (5) implies that there exists an index i_0 such that
\begin{equation}
F(z) = f_{i_0}(z)
\end{equation}
and
\begin{equation}
F(x) = f_{i_0}(x).
\end{equation}
But relation (12) determines the index i_0 uniquely, since the element z separates between the points of $\mathfrak{M}(A)$. By (13) we have $F = f_{i_0}$, since x was an arbitrary point in A. Conclusion follows.

An m-convex B_0-algebra is said to possess an orthogonal basis if there is a Schauder basis $\{e_i\}$ in A such that $e_i e_j = 0$ for $i \neq j$. Thus each element x in A can be written uniquely as $x = \sum_{i=1}^{\infty} \alpha_i(x) e_i$, the series being convergent in A and the coefficients $\alpha_i(x)$ being continuous linear functionals on A. Clearly any such algebra is commutative. Husain and Liang [4], cf. also [3], Theorem 3.47, have shown that every such algebra is functionally continuous. We shall obtain this result as a corollary to our theorem. In fact, let f be a non-zero continuous multiplicative-linear functional on A. There exists an index i_0 such that $f(e_{i_0}) \neq 0$. Otherwise for any element x in A we have
\begin{equation}
f(x) = f\left(\sum_{i=1}^{\infty} \alpha_i(x) e_i\right) = \sum_{i=1}^{\infty} \alpha_i(x) f(e_i) = 0
\end{equation}
and $f = 0$. Also for $i \neq i_0$ we have $0 = f(e_{i_0} e_i) = f(e_{i_0}) f(e_i)$ and so $f(e_i) = 0$. This implies $f(x) = \sum_{i=1}^{\infty} \alpha_i(x) f(e_i) = \alpha_{i_0}(x) f(e_{i_0})$. Thus f is a scalar multiple of α_{i_0}, which implies that the space $\mathfrak{M}(A)$ is at most countable. We obtain

Corollary (Husain and Liang). *Let A be an m-convex B_0-algebra with an orthogonal basis. Then A is functionally continuous.*

Remark. The above corollary is formulated in a slightly more general way than the result in [4], since it is assumed there that the basis is unconditional, which is irrelevant in our proof.

REFERENCES

MATHEMATICAL INSTITUTE
POLISH ACADEMY OF SCIENCES
WARSAW, POLAND

Reçu par la Rédaction le 15. 04. 1984