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1. Introduction. It was shown by Maczynski in [4] that every Boolean
algebra can be isomorphically represented as a numerical Boolean algebra,
which is, roughly speaking, a set of mappings from a non-empty set X
into the closed interval [0, 1], with the Boolean structure obtained by
means of the usual ordering of functions such that some Boolean funda-
mental operations are represented by numerical ones: the complemen-
tation is represented by the subtraction from 1, and the union of disjoint
elements by the arithmetical sum.

It was shown in [5] that a similar representation is possible in the
more general case of orthomodular partially ordered sets admitting a full
set of measures. This representation was used by the first author in proving
the theorem in [3].

In Section 3 of the present paper the definition of a numerical Post
algebra is given, and some necessary and sufficient conditions are stated
and proved for a partially ordered set of functions to be a Post algebra
with respect to the usual ordering of funetions. In Section 4 it is shown
that every Post algebra P has a numerical representation. Since a numerical
representation may be built up from every full set of measures on a given
Post algebra P, in Section 5 we discuss the question of when and how
a full set of measures on P arises from a full set of measures on the Boolean
center of P.

2. Preliminary definitions and notation. Let (P; ¢, ..., ¢,_,) denote
a Post algebra of order n. It is well known that P is a bounded distributive
lattice and 0 = ¢, < ... << e,_, = 1 is an n-term chain in P such that each
member x of P has a representation of the form
n—1
(2.1) x = (r;ne))V ... ve,_, = | (z;ne;),
t=1
where z; i8 a complemented element of P. If x;nx; = 0 for ¢ # j, represen-
tation (2.1) is called disjoint, and in this case the coefficients x; are usually
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denoted by C;(z), ¢ =1,...,n—1. Each member x € P has exactly one
disjoint representation. The center of all complemented elements of P
will be denoted by B, and ' will stand for the complement of z  B.

Let mg be a normed measure on B, i.e. my i3 a mapping from B into
the closed interval [0, 1] such that mg(1l) = 1 and mg(auUb) = mg(a)+

+ mg(b) provided that andb = 0. If a,,...,a,_, are any numbers such
that 0 = qy< a,< ... < a,_, =1, then the function
(2.2)

n—1

m(@) = mp(Cy(@) 0y + ... +mp(Co_y (@) @ay = D 'mp(Cy(a))a;, zeP,

is a measure on the Post algebra P (see [6]). If my is a two-valued measure
on B, then the measure m takes on only n values 0, a,,...,a,_, and is
called n-valued.

The set of all measures m defined by (2.2), where my runs over any
set M5 of normed measures my on B, will be denoted by (Mg; ay, ...,a,_,).
The set M = (Mg; agy ..., a,_,) i8 said to be full if m(z) < m(y) for all
m e M implies = <y.

We say that My induces a full set of measures on P provided that
there exists a chain of numbers 0 =gy < ¢, < ...< a,_, = 1 such that
the set M = (Mg; ag, ..., a,_,) is full. If M5 is the set of all two-valued
measures on B, then the set M is full for every fixed chain of constants
@y, ..., a,_, of the above kind.

In fact, if x & y, then there exists a j such that

n—1 n—1
U Gl & U G-
1= 1=)
Since My is full, there exists a measure m, € My such that

mo(UCiy) =0  and  my(U)Ci@) =1,

t=j i=j

i.e. me(C;(w)) =1 for a certain i > j. Hence

n—1 j—1
m(y) = D'my(Ciy))a; = D'my(Ciy))a; < e, and  m(z)>a;>a;
i=1 =1

Since a;_, < a;, we conclude that m(x) > m(y). So we proved that
every Post algebra admits a full set of measures.

Now, let [0,1]* denote the set of all functions from a non-empty
set X into the closed interval [0,1]. For all functions a,b in [0,1]%,
a-+b and a — b denote the sum and the difference of a and b, respectively;
a < b means that a(x) < b(x) for all x € X. The least and the greatest
functions in [0, 11¥ will be denoted by 0 and 1, respectively. The partially
ordered set ([0,1]%, <) is a complete distributive lattice.
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A subsystem (4, <) of ([0,11%, ) is said to be a numerical Boolean
algebra if it i3 a Boolean algebra with respect to < and to the relative
complementation gnf' = g—f for f< g, f, g € A. Maczynski proved in [4]
that every Boolean algebra can be isomorphically represented as a nu-
merical Boolean algebra, and that a subsystem (4 , <) of ([0, 11%, <) is a nu-
merical Boolean algebra if and only if the following conditions are satis-
fied:

1° The zero function 0 belongs to A.

2° For every a € A, 1 —a belongs to A.

3° For every triple a,,a,,a;€A, a;4+a; <1 for ¢ #j implies
a,+a,+a;eA.

4° For every pair a, b € A, there are ¢, ¢;, ¢; € A such that ¢;+¢; <1
for ¢ #j, a =¢,+c¢,, and b = ¢, +¢;,.

Notice that ¢ < b in a numerical Boolean algebra A implies b —a € 4.

3. Numerical Post algebras. Let (P, <) be a subsystem of ([0, 1]¥, <),
where < is the natural function ordering. We say that P is a numerical
Post algebra if the following conditions are satisfied :

5° P is a distributive lattice with respect to <.
6° The center B of P is a numerical Boolean algebra.
7° There exists a chain of constant functions 0 =g, < a;, < ...
<a,_, =1in P such that if fi,+ ... +f,_, <1l and f,eBfor: =1,...
..., n—1, then
(fina)V ... U(fu_1nayy) =frag+ ..o +fuy

with numerical operations on the right-hand side of this formula.
8° For every x € P, there exist f,e B (¢ =1, ..., n—1) such that

n—1
(3.1) a:==2f,~a,- and fi+...+f,_,<1,
i=1
and this representation is unique.
It is clear that (P; ay, ..., a,_,) is a Post algebra with respect to the
natural order of functions.
Representation (3.1) is disjoint, since f,+ ... +f,_; <1 implies
finf; =0 for ¢ #£j (see [4]).
THEOREM 1. Let M be a non-empty set and let P be a set of functions
from M into [0, 1]). Assume that the following conditions are satisfied:
I. There exists a subset B — P which is a numerical Boolean algebra
with respect to the natural ordering of functions.
I1. There exists a chain of constant functions 0 = ay< a, < ...< @, _,
=1 in P such that
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v

n—1

(a) = 2 fia; e P wheneveer‘ 1, f;eB for all 1 =1, n—1

i=1
(b) every w € P has an (a)-type representation;
¢c) for all »,y e P, '

e

n—1 n—1
x<vy if and only if Zfigz.q,- for k=1,...,n—1

=k i=k

provided x = fia,+ ... +fo_, omd y =g, a,+ ... +g,_, are (a)type
representations of x and y, respectively.

Then (P,<) 18 a mumerical Post algebra with respect to the natural
ordering of functions.

Proof. First of all we show that an (a)-type representation of an # € P
is unique. In fact, if

z=fiog+ ... +fusi=g0+ ... +9,.,

are two representations of that type, then f,_;, = g,_, follows immediately
from (c¢). Assume that f; = ¢, for ¢+ > k. Since, by (c),

-1

2 - Y.

we have

fk=§fz'_2ft Zy. Zy,—yk

t=k+1 t=k+1

So, by inductive argument, we obtain f; =g, forall ¢ =1,...,n—1.
In the second step of the proof we show that (P, <) is a distributive
lattice. Let us consider @, y € P with the (a)-type representations

n—1 n—1

x =Zfiai and y =Zgia’z"

=1 =1

Let, by definition,

(3.2) B _(Zf,uz g) — | 2 JAY, g,) for i =1,...,n—2

J=1 J=i+1 J=1+1

and
hn—l = fn—l Ufdn-1,

where the least upper bounds are taken in the Boolean algebra B. Evi-

dently, hye B for i =1, ...,n—1 (see the last observation in Section 2),
and
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h1+ Z fiUZ gz

=1 ,

Hence
(3.3) z2=ha,+ ... +hy,
is in P, according to (a). Since
n—1 n—1
Zf"< Z h; forj=1,...,0—1,
i=j i=j

the inequality # < 2 follows from (c). Similarly we can get y <z If 2z < w
and y <w, where w = k,a,+ ... +k,_, i8 an (a)-type representation,
then, by (c),

n—1

Zh-—Zf,UZg‘ Zk,- forj=1,...,n—1,

i=j i=j i=
which shows that 2z is the least upper bound of z and y. Similarly we can
prove that
(3.4) Ny =ha,+ ... +1,_,,
where

85) =SS a)=( S in 34

j=1 i=141 J=i+1
for i =1,...,n—2 and .5, =f,_,Nng,_,.

The distributivity of the lattice P follows, by an easy computation,
from formulas (3.2), (3.5), and from the distributivity of the Boolean

algebra B.

In the third step of the proof we show that condition 7° is satisfied.
If f € B, then f = fa,_, is the unique (a)-type representatlon of the func-
tion f. The unique (a)-type representation of the constant function a,

is a, = 1-a;. Then
n—1
foa, = 2 Liag,
i=1

where, for ¥ =1,...,n—1, P
0 ifi#Ek,
K=l o

Hence fna, = fa, for every fe B .a.nd k=1,...,n—1.

If z = f,a, and y = g,a, are (a)-type representations and 'f,+g¢,< 1,
then, by (3.2),

rVY = f14,Ug 0, = 2 hiay,

=1
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where

0 for + > 2,
h; =39, for ¢ =2,

fi for 2 =1.
Hence it follows that f, +f, < 1 implies
fia,Vfsa, = fia,+f.a,.
Now, let f,+ ... +f; <1 and assume that, for all ¢,
Z =fra0,Y ... Ufp_1@4_, = fra0+ ... +fr_16x_,, f;€B.

Then, setting ¥y = f, a, and using formulas (3.2) and (3.3) once more,
we get
xVy = hya,+ ... +h,_,,
where
0 for ¢>k,

fi for i<k,

h, =

1

Hence
fia,V ... VUfia, = fia;+ ... +fra, for k=1,...,n—1
by inductive arguments.

It remains to show that B is the center of all complemented elements
of P, but this follows from Theorem 2.2 of [2].

The converse statement of Theorem 1 is also true. In fact, by defi-
nition, conditions I and II (b) are satisfied. Condition II (a) follows from 7o,
Condition II (¢), in view of 79, is a reformulation of the well-known
equivalence

n—1 n—1
r<y i and only if .UkO,-(a:)g.UkCi(y) for k =1,...,n—1,

satisfied in any Post algebra (see, e.g., [1]).

4. Numerical representation theorem. Here we prove the following
theorem:

THEOREM 2. Every Post algebra can be isomorphically represented
as a numerical Post algebra.

Proof. Let (P; ¢y, ..., €,_;) be a Post algebra of order n with center B
of complemented elements of P. Let M = (Mg; ay,...,a,_,) be a full
set of measures on P (see Section 2). Let a mapping Z: M — [0, 1] defined
by
(41) z(m) =m(z) = mp(Cy(2))ay+ ... +mp(C,_y(®)), meM,

be associated with any x e P.
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The set P = {Z: x € P} is a numerical Post algebra with respect
to the natural ordering of functions. To show this, let us observe firstly
that the set B = P of all maps @, where a € B, is a numerical Boolean
algebra with respect to the same order. This was shown by Maczyniski in [4].
Since m(e;) = a, for every m e M and for ¢« =0,1,...,n—1, there are
n constant functions in P:

0=¢,a, =€,...,a, , =€, ;, =1.

Thus it follows from (4.1) that every Z e P has the (a)-type represen-
tation

(4.2) T =0, (2)a,+ ... +C,_ ().

We have just shown that conditions I and II (b) from Theorem 1
are satisfied. Condition II (a) can be proved as easily as those above.

We proceed to prove II (c). Since the set M of measures on P is full,
Z < 7 if and only if x < y. By the well-known property of Post algebras,
x <y if and only if

n—1
UG < U Cly) fori=1,..,n—1.
i U

Therefore, # < 7 if and only if

E mg(C; (2)) < ZmB(C,-(y)) for all mzpe Mg and ¢ =1,...,n—1

in view of the fact that M is a full set of measures. This equivalence,
however, means that z < 7 if and only if

Cj(m)gz C;(y) fori=1,...,n—1,

n
j=1 j=1

1 n—1

M

-
|

which, by (4.2), proves II (c¢).

Since M is a full set of measures, the mapping h from P onto P, defined
by h(xz) = z, is one-to-one. The restriction | B is a Boolean isomorphism
from B onto B. Furthermore, h maps constants of the Post algebra P
onto constants of the numerical Post algebra P; h(e;) = a,fori =0,1,...

., n—1. Therefore, » is an isomorphism (see [6]). This completes the
proof of the theorem (!).

(1) If M is the set of all n-valued measures on P, then the above-described
numerical representation coincides with the well-known Epstein represcntation [1].

2 — Colloquium Mathematicum XXXVII.1
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5. Full sets of measures. If P = [0, 1]¥ is a numerical Post algebra,
then a full set of measures on P may be obtained in the following way.
Let, for an me M, -

(5'1) (P'm(w) =fl(m)a’1+ e +fn—l(m)7

where f,a,+ ... +f,_, is an (a)-type representation of z € P. For every
m e M, ¢,, is 2 measure on P. In fact, ¢,, is, obviously, a mapping from P
into [0, 1]; also ¢,,(¢;) = a;fori =0,1,...,n—1. If zNny = 0 for some
x,y € P, then, by Lemma 5.3 of [6],

C,(wa) = 0,((13)U0,(y) a:nd O'(m)ﬂot(y) — O fOI‘ ?; = 1, ceey n—'l.

Therefore, if g,a,+ ... +¢,_, 18 an (a)-type representation of v,
we get
VY = (fitgda,+ ... +(facit9n-)y

whence ¢, (2VY) = ¢, () + ¢, (y) for xny = 0. Evidently, {¢,,: m € M}
is a full set of measures.

It follows from Section 4 that, in order to build up a numerical repre-
sentation of a given Post algebra (P; ¢, €, ..., €, _,), one ought to start
with a full set M = (Mz; a, a,, ..., a,_,) of measures on P with prop-
erty (2.2) for every m € M.

An important question is, however, whether a given full set M, of
measures on the center B of P can induce, by definition (2.2), a full set
of measures on P. We have shown in Section 2 that, by extending all
two-valued measures on B in this way, we get a full set of measures on
P independently of how the chain 0 =g, < a,<...< a,_; =1 has been
chosen. Generally, it is not the case.

Then, we now define the numbers a,,...,a,_, one by one in such
a way, if possible, that the set M of all extensions of form (2.2) be full.
Let A4, be the set of all numbers a <1 such that, for all z,ye B, x L ¥
implies am(x) > m(y) for some m € My. Since My is full, 1 € 4,, i.e. A4,
is not empty. Evidently, infA, > 0. We choose an a,€ 4,, a,<1, if
possible. Assume, by induction, that the numbers a; € 4; (¢ =1,...,k—1)
have been chosen in such a way that a,< a,<...< a,_, < 1. Let 4,
be the set of all numbers a < 1 such that, for all z,y € B, v § ¥ implies

am (@) > m(y) +m(y’) a_,

for some measure m € Mz. If 4, is not empty, then inf A4, > a,_,. In fact,
for x =1 and y = 0, we get a > a,,_,. We choose a, € 4;, a;,_, < a, <1,
if possible, for k =1,...,n—2 and a,_, = 1.

THEOREM 3. My induces a full set of measures M on the Post algebra
(P; €y €1y -0y ,_y) if and only if, in the above-described algorithm, a; € A;
may be chosen in such a way that A;, , #9 for i =1,...,n—2.
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Proof. Sufficiency. Let a;€e4d; ¢ =1,...,n—-1), e, < a, < ..
<a,,=1,let
n—1 . n—1
x = H (Ci(z)ne) and y'= U1 (Ci(y)ne)

be disjoint representations of x,y € P, and let = & v, i.e.
Cr(x) :L_); C;(y) for some k<<n—1.
Since a, € A, there exists an mgz € My such that
mg (Cy (“f')) Gy > mB(;Q: C; (1‘/)) +mpg (( ,:L;J: Oj(?l))') .

If m is the extension of my such that (2.2) holds, then

n—1

n—1 k—1 —
m(y) = Z mg(Ci(y))a; < 2 mB(Oi(y))ak—1+2 my(0(y))
o iz =k

< my( L__Jk C.(9))) ayy + i (Ok Ci(9)) < mp(Cr(@)) @ < ().

Hence M = (Mg; ay, ay, ..., a,_;) is a full set of measures.
Necessity. Suppose that 4, = @ for certain k¥ < n—1 and for every
choice of a; € A;, i < k. Then for every number a, there exist =,y € B
such that »  y and
mp(r) @, < mp(y)+mg(y’)a,_, for all mge Mp.
Therefore, by (2.2),
m(xzne) < m(y Ne._,vy) for all me M.

But zne, £ y'ne,_,Vy, which shows that the set M of measures
is not full. ‘

Examples. Consider a 4-element Boolean algebra B = {0, a, a’,1}
Let m; and m, be two measures on B defined by the following table:

’

|0 a a 1

0 2/5 3/5 1
0 3/6 2/5 1

my
My

My ="{m,, ms} is a full set of measures on B. A simple computation
shows that 4, # @ and A, = @. Hence. My does not induce a full set
of measures on any Post algebra with center B. If, however, m; and m,
are defined by the table

] 0 a a’ 1
my |0 1/4 3/4 1
my|0 3/4 1/4 1
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then 4, #0, A, #0 for 1/3<a;<2/3, and 4; = . Therefore, this
time M induces a full set of measures on a Post algebra of order 3, but
it does not induce & full set.of measures on any Post algebra of order
greater than 3.

LEMMA 1. If My is a full set of measures on a Boolean algebra B,
then for every x € B, x # 0, there exists a measure mg € My such that
mg(z) > 1/2.

Proof. If, on the contrary, mzy(xr) <1/2 for all mgze Mgy, then
mg(x) < mg(z’) for all myzy € My, which implies # < 2, a contradiction.

THEOREM 4. Assume that the Post algebra (P; ey, €,y ..., €,_,) 18 finite,
and that My is a full set of measures on the center B of P. Then M =
(Mp; agy @yy ...y @,_,) 18 @& full set of measures on P if and only if

1—¢

a, > ap_,+ for k=1,...,n—-1,

where
e = inf sup mg(x).

0#xeB mpeMp

Proof. Sufficiency. Let
@ =;Q(Oj(:v)ne,-) and y = E(Gj(y)nej)
be two disjoint representations of z,y € P. If # v, then, for certain £k,
Oy (z) {J’g Ci(y).

Therefore, there exists a non-zero element v € B such that

n—1
' u< C(®) and w<(UCG®).
ik

Let m € M be a measure such that m|B = m}, where my(u) > ¢
> 1/2 (see Lemma 1). Then

my) < my((U ) e +ms(U 0,0) < m (), +mp(w).
)= )=

The last inequality is a consequence of the simple arithmetical fact
that 0 <a,b,c<1 and a<b imply be+1—-b< ac+1—a.
Consequently,

1—
m(y) < mb(u)a,_, + —;f m () < m(w) @, < Mm% (Cy (%)) @, < m ().

Thus the set M is full.
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Necessity. Suppose that, for some %,
1—¢

)
&

ak < ak_1+ i-e. £alk < Sak_l—l‘l_ao

Since the set M is finite, we can choose an atom u, € B and a measure
m{ € My such that m(u,) = e. Since the inequality my(u,) < ¢ holds
for all mz e My, we have

mp(tho) Oy < ey < 0y +1—e < mp(ug)ay_, +mp(u,) for all mye My,
This proves that
m(uyNe,) < m(ugNne,_,Vu,) for all me M.

But u,ne;, & uyNe,_, U, contradicting the fullness of M. In the
above-considered examples, for the former we have ¢ = 3/5, and for the
latter we have ¢ = 3/4.

We finish the paper with the following property of the family of all
full sets of measures on a given Boolean algebra:

THEOREM 5. For every full set M, of measures on an atomic Boolean
algebra B there ewists a subset My — My which is minimal in the family
(ordered by inclusion) of all full sets of measures on B. The cardinal number
of My equals the one of the set of atoms of the Boolean algebra B.

Proof. Let A be the set of all atoms of B. For each z € A let us
choose a measure myi € My such that mi(x) > 1/2. We assert that My
= {m% € Mp: x € A}is a full set of measures. In fact, assume that y, < ¥,
for some y,, ¥, € B. Then there exists an ¢ € A such that z < y, and y, < .
Hence

my () > M () > 3 > mh () > m(y),
which implies the fullness of M. :

Now consider My = Mp\{my} for a fixed atom x, € A. Then, for
all measures mye My we have m%(m)<1/2 (since Nz, =0 and
m%(x) > 1/2). Therefore, for all m§, e My,

1 ,
mg (@,) < Y < mg(%,),
but @, & %,, i.6. My is not full.
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