ON SOME NUMERICAL REPRESENTATION OF POST ALGEBRAS

 $\mathbf{B}\mathbf{Y}$

J. KLUKOWSKI AND T. TRACZYK (WARSZAWA)

1. Introduction. It was shown by Mączyński in [4] that every Boolean algebra can be isomorphically represented as a numerical Boolean algebra, which is, roughly speaking, a set of mappings from a non-empty set X into the closed interval [0,1], with the Boolean structure obtained by means of the usual ordering of functions such that some Boolean fundamental operations are represented by numerical ones: the complementation is represented by the subtraction from 1, and the union of disjoint elements by the arithmetical sum.

It was shown in [5] that a similar representation is possible in the more general case of orthomodular partially ordered sets admitting a full set of measures. This representation was used by the first author in proving the theorem in [3].

In Section 3 of the present paper the definition of a numerical Post algebra is given, and some necessary and sufficient conditions are stated and proved for a partially ordered set of functions to be a Post algebra with respect to the usual ordering of functions. In Section 4 it is shown that every Post algebra P has a numerical representation. Since a numerical representation may be built up from every full set of measures on a given Post algebra P, in Section 5 we discuss the question of when and how a full set of measures on P arises from a full set of measures on the Boolean center of P.

2. Preliminary definitions and notation. Let $(P; e_0, \ldots, e_{n-1})$ denote a Post algebra of order n. It is well known that P is a bounded distributive lattice and $0 = e_0 < \ldots < e_{n-1} = 1$ is an n-term chain in P such that each member x of P has a representation of the form

$$(2.1) x = (x_1 \cap e_1) \cup \ldots \cup x_{n-1} = \bigcup_{i=1}^{n-1} (x_i \cap e_i),$$

where x_i is a complemented element of P. If $x_i \cap x_j = 0$ for $i \neq j$, representation (2.1) is called *disjoint*, and in this case the coefficients x_i are usually

denoted by $C_i(x)$, i = 1, ..., n-1. Each member $x \in P$ has exactly one disjoint representation. The center of all complemented elements of P will be denoted by B, and x' will stand for the complement of $x \in B$.

Let m_B be a normed measure on B, i.e. m_B is a mapping from B into the closed interval [0,1] such that $m_B(1)=1$ and $m_B(a \cup b)=m_B(a)+m_B(b)$ provided that $a \cap b=0$. If a_1, \ldots, a_{n-1} are any numbers such that $0=a_0 < a_1 < \ldots < a_{n-1}=1$, then the function (2.2)

$$m(x) = m_B(C_1(x))a_1 + \ldots + m_B(C_{n-1}(x))a_{n-1} = \sum_{i=1}^{n-1} m_B(C_i(x))a_i, \quad x \in P,$$

is a measure on the Post algebra P (see [6]). If m_B is a two-valued measure on B, then the measure m takes on only n values $0, a_1, \ldots, a_{n-1}$ and is called n-valued.

The set of all measures m defined by (2.2), where m_B runs over any set M_B of normed measures m_B on B, will be denoted by $(M_B; a_0, \ldots, a_{n-1})$. The set $M = (M_B; a_0, \ldots, a_{n-1})$ is said to be full if $m(x) \leq m(y)$ for all $m \in M$ implies $x \leq y$.

We say that M_B induces a full set of measures on P provided that there exists a chain of numbers $0 = a_0 < a_1 < ... < a_{n-1} = 1$ such that the set $M = (M_B; a_0, ..., a_{n-1})$ is full. If M_B is the set of all two-valued measures on B, then the set M is full for every fixed chain of constants $a_0, ..., a_{n-1}$ of the above kind.

In fact, if $x \not \subset y$, then there exists a j such that

$$\bigcup_{i=1}^{n-1} C_i(x) \, \blacktriangleleft \, \bigcup_{i=1}^{n-1} C_i(y).$$

Since M_B is full, there exists a measure $m_0 \in M_B$ such that

$$m_0ig(igcup_{i=j}^{n-1}C_i(y)ig)=0 \quad ext{ and } \quad m_0ig(igcup_{i=j}^{n-1}C_i(x)ig)=1,$$

i.e. $m_0(C_i(x)) = 1$ for a certain $i \geqslant j$. Hence

$$m(y) = \sum_{i=1}^{n-1} m_0(C_i(y)) a_i = \sum_{i=1}^{j-1} m_0(C_i(y)) a_i \leqslant a_{j-1}$$
 and $m(x) \geqslant a_i \geqslant a_j$.

Since $a_{j-1} < a_j$, we conclude that m(x) > m(y). So we proved that every Post algebra admits a full set of measures.

Now, let $[0,1]^X$ denote the set of all functions from a non-empty set X into the closed interval [0,1]. For all functions a,b in $[0,1]^X$, a+b and a-b denote the sum and the difference of a and b, respectively; $a \le b$ means that $a(x) \le b(x)$ for all $x \in X$. The least and the greatest functions in $[0,1]^X$ will be denoted by 0 and 1, respectively. The partially ordered set $([0,1]^X, \le)$ is a complete distributive lattice.

A subsystem (A, \leqslant) of $([0,1]^X, \leqslant)$ is said to be a numerical Boolean algebra if it is a Boolean algebra with respect to \leqslant and to the relative complementation $g \cap f' = g - f$ for $f \leqslant g$, $f, g \in A$. Mączyński proved in [4] that every Boolean algebra can be isomorphically represented as a numerical Boolean algebra, and that a subsystem (A, \leqslant) of $([0, 1]^X, \leqslant)$ is a numerical Boolean algebra if and only if the following conditions are satisfied:

- 1° The zero function 0 belongs to A.
- 2° For every $a \in A$, 1-a belongs to A.
- 3° For every triple $a_1, a_2, a_3 \in A, a_i + a_j \leqslant 1$ for $i \neq j$ implies $a_1 + a_2 + a_3 \in A$.
- 4° For every pair $a, b \in A$, there are $c_1, c_2, c_3 \in A$ such that $c_i + c_j \leq 1$ for $i \neq j$, $a = c_1 + c_2$, and $b = c_2 + c_3$.

Notice that $a \leq b$ in a numerical Boolean algebra A implies $b - a \in A$.

- 3. Numerical Post algebras. Let (P, \leq) be a subsystem of $([0, 1]^X, \leq)$, where \leq is the natural function ordering. We say that P is a numerical Post algebra if the following conditions are satisfied:
 - 5° P is a distributive lattice with respect to \leq .
 - 6° The center B of P is a numerical Boolean algebra.
- 7° There exists a chain of constant functions $0 = a_0 < a_1 < \dots < a_{n-1} = 1$ in P such that if $f_1 + \dots + f_{n-1} \le 1$ and $f_i \in B$ for $i = 1, \dots, n-1$, then

$$(f_1 \cap a_1) \cup \ldots \cup (f_{n-1} \cap a_{n-1}) = f_1 a_1 + \ldots + f_{n-1}$$

with numerical operations on the right-hand side of this formula.

8° For every $x \in P$, there exist $f_i \in B$ (i = 1, ..., n-1) such that

(3.1)
$$x = \sum_{i=1}^{n-1} f_i a_i \quad \text{and} \quad f_1 + \ldots + f_{n-1} \leqslant 1,$$

and this representation is unique.

It is clear that $(P; a_0, ..., a_{n-1})$ is a Post algebra with respect to the natural order of functions.

Representation (3.1) is disjoint, since $f_1 + \ldots + f_{n-1} \leq 1$ implies $f_i \cap f_j = 0$ for $i \neq j$ (see [4]).

THEOREM 1. Let M be a non-empty set and let P be a set of functions from M into [0,1]. Assume that the following conditions are satisfied:

- I. There exists a subset $B \subset P$ which is a numerical Boolean algebra with respect to the natural ordering of functions.
- II. There exists a chain of constant functions $0 = a_0 < a_1 < ... < a_{n-1} = 1$ in P such that

(a)
$$x = \sum_{i=1}^{n-1} f_i a_i \in P$$
 whenever $\sum_{i=1}^{n-1} f_i \leqslant 1$, $f_i \in B$ for all $i = 1, ..., n-1$;

- (b) every $x \in P$ has an (a)-type representation;
- (c) for all $x, y \in P$,

$$x \leqslant y$$
 if and only if $\sum_{i=k}^{n-1} f_i \leqslant \sum_{i=k}^{n-1} g_i$ for $k = 1, ..., n-1$

provided $x = f_1 a_1 + \ldots + f_{n-1}$ and $y = g_1 a_1 + \ldots + g_{n-1}$ are (a)-type representations of x and y, respectively.

Then (P, \leq) is a numerical Post algebra with respect to the natural ordering of functions.

Proof. First of all we show that an (a)-type representation of an $x \in P$ is unique. In fact, if

$$x = f_1 a_1 + \ldots + f_{n-1} = g_1 a_1 + \ldots + g_{n-1}$$

are two representations of that type, then $f_{n-1} = g_{n-1}$ follows immediately from (c). Assume that $f_i = g_i$ for i > k. Since, by (c),

$$\sum_{i=k}^{n-1} f_i = \sum_{i=k}^{n-1} g_i,$$

we have

$$f_k = \sum_{i=k}^{n-1} f_i - \sum_{i=k+1}^{n-1} f_i = \sum_{i=k}^{n-1} g_i - \sum_{i=k+1}^{n-1} g_i = g_k.$$

So, by inductive argument, we obtain $f_i = g_i$ for all i = 1, ..., n-1. In the second step of the proof we show that (P, \leq) is a distributive lattice. Let us consider $x, y \in P$ with the (a)-type representations

$$x = \sum_{i=1}^{n-1} f_i a_i$$
 and $y = \sum_{i=1}^{n-1} g_i a_i$.

Let, by definition,

$$(3.2) h_i = \left(\sum_{j=i}^{n-1} f_j \cup \sum_{j=i}^{n-1} g_j\right) - \left(\sum_{j=i+1}^{n-1} f_j \cup \sum_{j=i+1}^{n-1} g_j\right) \text{for } i = 1, \ldots, n-2$$

and

$$h_{n-1} = f_{n-1} \cup g_{n-1},$$

where the least upper bounds are taken in the Boolean algebra B. Evidently, $h_i \in B$ for i = 1, ..., n-1 (see the last observation in Section 2), and

$$h_1 + \ldots + h_{n-1} = \sum_{i=1}^{n-1} f_i \cup \sum_{i=1}^{n-1} g_i \leqslant 1.$$

Hence

$$(3.3) z = h_1 a_1 + \ldots + h_{n-1}$$

is in P, according to (a). Since

$$\sum_{i=j}^{n-1} f_i \leqslant \sum_{i=j}^{n-1} h_i \quad \text{for } j = 1, ..., n-1,$$

the inequality $x \le z$ follows from (c). Similarly we can get $y \le z$. If $x \le w$ and $y \le w$, where $w = k_1 a_1 + \ldots + k_{n-1}$ is an (a)-type representation, then, by (c),

$$\sum_{i=j}^{n-1} h_i = \sum_{i=j}^{n-1} f_i \cup \sum_{i=j}^{n-1} g_i \leqslant \sum_{i=j}^{n-1} k_i \quad \text{for } j = 1, ..., n-1,$$

which shows that z is the least upper bound of x and y. Similarly we can prove that

$$(3.4) x \cap y = l_1 a_1 + \ldots + l_{n-1},$$

where

(3.5)
$$l_{i} = \left(\sum_{j=i}^{n-1} f_{j} \cap \sum_{j=i}^{n-1} g_{j}\right) - \left(\sum_{j=i+1}^{n-1} f_{j} \cap \sum_{j=i+1}^{n-1} g_{j}\right)$$
for $i = 1, ..., n-2$ and $l_{n-1} = f_{n-1} \cap g_{n-1}$.

The distributivity of the lattice P follows, by an easy computation, from formulas (3.2), (3.5), and from the distributivity of the Boolean algebra B.

In the third step of the proof we show that condition 7° is satisfied. If $f \in B$, then $f = fa_{n-1}$ is the unique (a)-type representation of the function f. The unique (a)-type representation of the constant function a_k is $a_k = 1 \cdot a_k$. Then

$$f \cap a_k = \sum_{i=1}^{n-1} l_i a_i,$$

where, for $k=1,\ldots,n-1$,

$$l_i = egin{cases} 0 & ext{ if } i
eq k, \ f & ext{ if } i = k. \end{cases}$$

Hence $f \cap a_k = fa_k$ for every $f \in B$ and k = 1, ..., n-1.

If $x = f_1 a_1$ and $y = g_2 a_2$ are (a)-type representations and $f_1 + g_2 \le 1$, then, by (3.2),

$$x \cup y = f_1 a_1 \cup g_2 a_2 = \sum_{i=1}^{n-1} h_i a_i,$$

where

$$h_i = egin{cases} 0 & ext{ for } i > 2\,, \ g_2 & ext{ for } i = 2\,, \ f_1 & ext{ for } i = 1\,. \end{cases}$$

Hence it follows that $f_1 + f_2 \leq 1$ implies

$$f_1a_1 \cup f_2a_2 = f_1a_1 + f_2a_2.$$

Now, let $f_1 + \ldots + f_k \leq 1$ and assume that, for all i,

$$x = f_1 a_1 \cup \ldots \cup f_{k-1} a_{k-1} = f_1 a_1 + \ldots + f_{k-1} a_{k-1}, \quad f_i \in B.$$

Then, setting $y = f_k a_k$ and using formulas (3.2) and (3.3) once more, we get

$$x \cup y = h_1 a_1 + \ldots + h_{n-1},$$

where

$$h_i = egin{cases} 0 & ext{ for } i > k, \ f_i & ext{ for } i \leqslant k. \end{cases}$$

Hence

$$f_1 a_1 \cup \ldots \cup f_k a_k = f_1 a_1 + \ldots + f_k a_k$$
 for $k = 1, \ldots, n-1$

by inductive arguments.

It remains to show that B is the center of all complemented elements of P, but this follows from Theorem 2.2 of [2].

The converse statement of Theorem 1 is also true. In fact, by definition, conditions I and II (b) are satisfied. Condition II (a) follows from 7°. Condition II (c), in view of 7°, is a reformulation of the well-known equivalence

$$x\leqslant y$$
 if and only if $\bigcup_{i=k}^{n-1}C_i(x)\leqslant \bigcup_{i=k}^{n-1}C_i(y)$ for $k=1,\ldots,n-1,$

satisfied in any Post algebra (see, e.g., [1]).

4. Numerical representation theorem. Here we prove the following theorem:

THEOREM 2. Every Post algebra can be isomorphically represented as a numerical Post algebra.

Proof. Let $(P; e_0, ..., e_{n-1})$ be a Post algebra of order n with center B of complemented elements of P. Let $M = (M_B; a_0, ..., a_{n-1})$ be a full set of measures on P (see Section 2). Let a mapping $\overline{x} \colon M \to [0, 1]$ defined by

(4.1)
$$\bar{x}(m) = m(x) = m_B(C_1(x))a_1 + \ldots + m_B(C_{n-1}(x)), \quad m \in M,$$

be associated with any $x \in P$.

The set $\overline{P} = \{\overline{x} \colon x \in P\}$ is a numerical Post algebra with respect to the natural ordering of functions. To show this, let us observe firstly that the set $\overline{B} \subset \overline{P}$ of all maps \overline{a} , where $a \in B$, is a numerical Boolean algebra with respect to the same order. This was shown by Mączyński in [4]. Since $m(e_i) = a_i$ for every $m \in M$ and for i = 0, 1, ..., n-1, there are n constant functions in \overline{P} :

$$0 = \bar{e}_0, a_1 = \bar{e}_1, \ldots, a_{n-1} = \bar{e}_{n-1} = 1.$$

Thus it follows from (4.1) that every $\overline{x} \in \overline{P}$ has the (a)-type representation

$$\overline{x} = \overline{C_1(x)}a_1 + \ldots + \overline{C_{n-1}(x)}.$$

We have just shown that conditions I and II (b) from Theorem 1 are satisfied. Condition II (a) can be proved as easily as those above.

We proceed to prove II (c). Since the set M of measures on P is full, $\bar{x} \leq \bar{y}$ if and only if $x \leq y$. By the well-known property of Post algebras, $x \leq y$ if and only if

$$\bigcup_{j=i}^{n-1} C_j(x) \leqslant \bigcup_{j=i}^{n-1} C_j(y) \quad \text{ for } i=1,\ldots,n-1.$$

Therefore, $\bar{x} \leqslant \bar{y}$ if and only if

$$\sum_{j=i}^{n-1} m_B \big(C_j(x) \big) \leqslant \sum_{j=i}^{n-1} m_B \big(C_j(y) \big) \quad \text{ for all } m_B \in M_B \text{ and } i = 1, \ldots, n-1$$

in view of the fact that M_B is a full set of measures. This equivalence, however, means that $\bar{x}\leqslant \bar{y}$ if and only if

$$\sum_{j=i}^{n-1} \overline{C_j(x)} \leqslant \sum_{j=i}^{n-1} \overline{C_j(y)} \quad \text{ for } i=1,\ldots,n-1,$$

which, by (4.2), proves II (c).

Since M is a full set of measures, the mapping h from P onto \overline{P} , defined by $h(x) = \overline{x}$, is one-to-one. The restriction $h \mid B$ is a Boolean isomorphism from B onto \overline{B} . Furthermore, h maps constants of the Post algebra P onto constants of the numerical Post algebra \overline{P} ; $h(e_i) = a_i$ for $i = 0, 1, \ldots, n-1$. Therefore, h is an isomorphism (see [6]). This completes the proof of the theorem (1).

⁽¹⁾ If M is the set of all n-valued measures on P, then the above-described numerical representation coincides with the well-known Epstein representation [1].

^{2 —} Colloquium Mathematicum XXXVII.1

5. Full sets of measures. If $P \subset [0, 1]^M$ is a numerical Post algebra, then a full set of measures on P may be obtained in the following way. Let, for an $m \in M$,

(5.1)
$$\varphi_m(x) = f_1(m)a_1 + \ldots + f_{n-1}(m),$$

where $f_1a_1 + \ldots + f_{n-1}$ is an (a)-type representation of $x \in P$. For every $m \in M$, φ_m is a measure on P. In fact, φ_m is, obviously, a mapping from P into [0,1]; also $\varphi_m(e_i) = a_i$ for $i = 0, 1, \ldots, n-1$. If $x \cap y = 0$ for some $x, y \in P$, then, by Lemma 5.3 of [6],

$$C_i(x \cup y) = C_i(x) \cup C_i(y)$$
 and $C_i(x) \cap C_i(y) = 0$ for $i = 1, ..., n-1$.

Therefore, if $g_1a_1 + \ldots + g_{n-1}$ is an (a)-type representation of y, we get

$$x \cup y = (f_1 + g_1)a_1 + \ldots + (f_{n-1} + g_{n-1}),$$

whence $\varphi_m(x \cup y) = \varphi_m(x) + \varphi_m(y)$ for $x \cap y = 0$. Evidently, $\{\varphi_m : m \in M\}$ is a full set of measures.

It follows from Section 4 that, in order to build up a numerical representation of a given Post algebra $(P; e_0, e_1, \ldots, e_{n-1})$, one ought to start with a full set $M = (M_B; a_0, a_1, \ldots, a_{n-1})$ of measures on P with property (2.2) for every $m \in M$.

An important question is, however, whether a given full set M_B of measures on the center B of P can induce, by definition (2.2), a full set of measures on P. We have shown in Section 2 that, by extending all two-valued measures on B in this way, we get a full set of measures on P independently of how the chain $0 = a_0 < a_1 < \ldots < a_{n-1} = 1$ has been chosen. Generally, it is not the case.

Then, we now define the numbers a_1, \ldots, a_{n-1} one by one in such a way, if possible, that the set M of all extensions of form (2.2) be full. Let A_1 be the set of all numbers $a \le 1$ such that, for all $x, y \in B$, $x \le y$ implies am(x) > m(y) for some $m \in M_B$. Since M_B is full, $1 \in A_1$, i.e. A_1 is not empty. Evidently, $\inf A_1 \ge 0$. We choose an $a_1 \in A_1$, $a_1 < 1$, if possible. Assume, by induction, that the numbers $a_i \in A_i$ $(i = 1, \ldots, k-1)$ have been chosen in such a way that $a_1 < a_2 < \ldots < a_{k-1} < 1$. Let A_k be the set of all numbers $a \le 1$ such that, for all $x, y \in B$, $x \le y$ implies

$$am(x) > m(y) + m(y') a_{k-1}$$

for some measure $m \in M_B$. If A_k is not empty, then $\inf A_k \geqslant a_{k-1}$. In fact, for x = 1 and y = 0, we get $a > a_{k-1}$. We choose $a_k \in A_k$, $a_{k-1} < a_k < 1$, if possible, for k = 1, ..., n-2 and $a_{n-1} = 1$.

THEOREM 3. M_B induces a full set of measures M on the Post algebra $(P; e_0, e_1, \ldots, e_{n-1})$ if and only if, in the above-described algorithm, $a_i \in A_i$ may be chosen in such a way that $A_{i+1} \neq \emptyset$ for $i = 1, \ldots, n-2$.

Proof. Sufficiency. Let $a_i \in A_i$ (i = 1, ..., n-1), $a_1 < a_2 < ... < a_{n-1} = 1$, let

$$x = igcup_{i=1}^{n-1} ig(C_i(x) \cap e_i ig) \quad ext{ and } \quad y = igcup_{i=1}^{n-1} ig(C_i(y) \cap e_i ig)$$

be disjoint representations of $x, y \in P$, and let $x \leq y$, i.e.

$$C_k(x)
\leqslant \bigcup_{j=k}^{n-1} C_j(y)$$
 for some $k \leqslant n-1$.

Since $a_k \in A_k$, there exists an $m_B \in M_B$ such that

$$m_Big(C_k(x)ig)a_k > m_Big(igcup_{j=k}^{n-1}C_j(y)ig) + m_Big(ig(igcup_{j=k}^{n-1}C_j(y)ig)'ig)a_{k-1}.$$

If m is the extension of m_B such that (2.2) holds, then

$$egin{aligned} m(y) &= \sum_{i=1}^{n-1} m_Big(C_i(y)ig) a_i \leqslant \sum_{i=1}^{k-1} m_Big(C_i(y)ig) a_{k-1} + \sum_{i=k}^{n-1} m_Big(C_i(y)ig) \ &\leqslant m_Big(ig(igcup_{i=k}^{n-1} C_i(y)ig)'ig) a_{k-1} + m_Big(igcup_{i=k}^{n-1} C_i(y)ig) < m_Big(C_k(x)ig) a_k \leqslant m(x) \,. \end{aligned}$$

Hence $M = (M_B; a_0, a_1, ..., a_{n-1})$ is a full set of measures.

Necessity. Suppose that $A_k = \emptyset$ for certain $k \le n-1$ and for every choice of $a_i \in A_i$, i < k. Then for every number a_k there exist $x, y \in B$ such that $x \not \le y$ and

$$m_B(x) a_k \leqslant m_B(y) + m_B(y') a_{k-1}$$
 for all $m_B \in M_B$.

Therefore, by (2.2),

$$m(x \cap e_k) \leqslant m(y' \cap e_{k-1} \cup y)$$
 for all $m \in M$.

But $x \cap e_k \leqslant y' \cap e_{k-1} \cup y$, which shows that the set M of measures is not full.

Examples. Consider a 4-element Boolean algebra $B = \{0, a, a', 1\}$ Let m_1 and m_2 be two measures on B defined by the following table:

 $M_B = \{m_1, m_2\}$ is a full set of measures on B. A simple computation shows that $A_1 \neq \emptyset$ and $A_2 = \emptyset$. Hence M_B does not induce a full set of measures on any Post algebra with center B. If, however, m_1 and m_2 are defined by the table

then $A_1 \neq \emptyset$, $A_2 \neq \emptyset$ for $1/3 < a_1 < 2/3$, and $A_3 = \emptyset$. Therefore, this time M_B induces a full set of measures on a Post algebra of order 3, but it does not induce a full set of measures on any Post algebra of order greater than 3.

LEMMA 1. If M_B is a full set of measures on a Boolean algebra B, then for every $x \in B$, $x \neq 0$, there exists a measure $m_B \in M_B$ such that $m_B(x) > 1/2$.

Proof. If, on the contrary, $m_B(x) \leq 1/2$ for all $m_B \in M_B$, then $m_B(x) \leq m_B(x')$ for all $m_B \in M_B$, which implies $x \leq x'$, a contradiction.

THEOREM 4. Assume that the Post algebra $(P; e_0, e_1, \ldots, e_{n-1})$ is finite, and that M_B is a full set of measures on the center B of P. Then $M = (M_B; a_0, a_1, \ldots, a_{n-1})$ is a full set of measures on P if and only if

$$a_k > a_{k-1} + \frac{1-\varepsilon}{\varepsilon}$$
 for $k = 1, ..., n-1$,

where

$$\varepsilon = \inf_{0 \neq x \in B} \sup_{m_B \in M_B} m_B(x).$$

Proof. Sufficiency. Let

$$x = igcup_{j=1}^{n-1} ig(C_j(x) \cap e_j ig) \quad ext{ and } \quad y = igcup_{j=1}^{n-1} ig(C_j(y) \cap e_j ig)$$

be two disjoint representations of $x, y \in P$. If $x \not \triangleleft y$, then, for certain k,

$$C_k(x) \ll \bigcup_{j=k}^{n-1} C_j(y)$$
.

Therefore, there exists a non-zero element $u \in B$ such that

$$u \leqslant C_k(x)$$
 and $u \leqslant (\bigcup_{j=k}^{n-1} C_j(y))'$.

Let $m \in M$ be a measure such that $m \mid B = m_B^u$, where $m_B^u(u) \ge \varepsilon > 1/2$ (see Lemma 1). Then

$$m(y)\leqslant m_B^uig(ig(igcup_{j=k}^{n-1}C_j(y)ig)'ig)a_{k-1}+m_B^uig(igcup_{j=k}^{n-1}C_j(y)ig)\leqslant m_B^u(u)\,a_{k-1}+m_B^u(u')\,.$$

The last inequality is a consequence of the simple arithmetical fact that $0 \le a, b, c \le 1$ and $a \le b$ imply $bc+1-b \le ac+1-a$.

Consequently,

$$m(y) \leqslant m_B^u(u) a_{k-1} + rac{1-arepsilon}{arepsilon} m_B^u(u) < m_B^u(u) a_k \leqslant m_B^u(C_k(x)) a_k \leqslant m(x).$$

Thus the set M is full.

Necessity. Suppose that, for some k,

$$a_k \leqslant a_{k-1} + rac{1-arepsilon}{arepsilon}, \quad ext{i.e.} \quad arepsilon a_k \leqslant arepsilon a_{k-1} + 1 - arepsilon.$$

Since the set M_B is finite, we can choose an atom $u_0 \in B$ and a measure $m_B^{(0)} \in M_B$ such that $m_B^{(0)}(u_0) = \varepsilon$. Since the inequality $m_B(u_0) \leqslant \varepsilon$ holds for all $m_B \in M_B$, we have

 $m_B(u_0)a_k \leqslant \varepsilon a_k \leqslant \varepsilon a_{k-1} + 1 - \varepsilon \leqslant m_B(u_0)a_{k-1} + m_B(u_0')$ for all $m_B \in M_B$.

This proves that

$$m(u_0 \cap e_k) \leqslant m(u_0 \cap e_{k-1} \cup u'_0)$$
 for all $m \in M$.

But $u_0 \cap e_k \not \leq u_0 \cap e_{k-1} \cup u'_0$, contradicting the fullness of M. In the above-considered examples, for the former we have $\varepsilon = 3/5$, and for the latter we have $\varepsilon = 3/4$.

We finish the paper with the following property of the family of all full sets of measures on a given Boolean algebra:

THEOREM 5. For every full set M_B of measures on an atomic Boolean algebra B there exists a subset $M'_B \subset M_B$ which is minimal in the family (ordered by inclusion) of all full sets of measures on B. The cardinal number of M'_{B} equals the one of the set of atoms of the Boolean algebra B.

Proof. Let A be the set of all atoms of B. For each $x \in A$ let us choose a measure $m_B^x \in M_B$ such that $m_B^x(x) > 1/2$. We assert that M_B' $= \{m_B^x \in M_B: x \in A\}$ is a full set of measures. In fact, assume that $y_1 \not \leqslant y_2$ for some $y_1, y_2 \in B$. Then there exists an $x \in A$ such that $x \leq y_1$ and $y_2 \leq x'$. Hence

$$m_B^x(y_1) \geqslant m_B^x(x) > \frac{1}{2} > m_B^x(x') \geqslant m_B^x(y_2),$$

which implies the fullness of M_B' . Now consider $M_B'' = M_B' \setminus \{m_B^{x_0}\}$ for a fixed atom $x_0 \in A$. Then, for all measures $m_B^x \in M_B^{"}$ we have $m_B^x(x_0) < 1/2$ (since $x \cap x_0 = 0$ and $m_B^x(x) > 1/2$). Therefore, for all $m_B^x \in M_B''$,

$$m_B^x(x_0) < \frac{1}{2} < m_B^x(x_0'),$$

but $x_0 \not \leqslant x_0'$, i.e. M_B'' is not full.

REFERENCES

- [1] G. Epstein, The lattice theory of Post algebras, Transactions of the American Mathematical Society 95 (1960), p. 300-317.
- [2] and A. Horn, Chain based lattices, Pacific Journal of Mathematics 55 (1974), p. 65-84.

- [3] J. Klukowski, On Boolean orthomodular posets, Demonstratio Mathematica 8 (1975), p. 5-14.
- [4] M. J. Mączyński, On some numerical characterization of Boolean algebras, Colloquium Mathematicum 27 (1973), p. 207-210.
- [5] and T. Traczyk, A characterization of orthomodular partially ordered sets admitting a full set of states, Bulletin de l'Académie Polonaise des Sciences, Série des sciences mathématiques, astronomiques et physiques, 21 (1973), p. 3-8.
- [6] T. Traczyk, Axioms and some properties of Post algebras, Colloquium Mathematicum 10 (1963), p. 193-209.

INSTITUTE OF MATHEMATICS WARSAW TECHNICAL UNIVERSITY WARSZAWA

> Reçu par la Rédaction le 11. 6. 1975; en version modifiée le 30. 10. 1975