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Remarks on a nonlinear Volterra equation

by W. MypLARCZYK (Wroctaw)

Abstract. Nonnegative solutions of the nonlinear equation u = ksg(u) (9(0) =0) are
considered. Certain necessary and sufficient conditions for the existence of a nontrivial solution are
given.

1. Introduction. In the theory of nonlinear waves in tubes the following
equation is considered:

x
u(x) = [ (x—s)*u'’t(s) ds,

0
where a > 0, f > 1 are physical parameters (see [2]). From a physical point of
view only nonnegative solutions of this equation are interesting. But let us note
that the trivial solution u = 0 satisfies this equation. More generally, we are
interested in necessary and sufficient conditions for the existence of a non-
negative continuous solution of the nonlinear Volterra equation

(1.1) u(x) = ,jck(x—-s)g(u(s)) ds.

The case of the kernel k(x) = x% « > 0, was solved satisfactorily by G.
Gripenberg in [1]. For other classes of kernels no similar conditions are
known. We present certain necessary and sufficient conditions for the existence
of a nonnegative continuous solution u # 0 of (1.1). Such a solution will be
called shortly a nontrivial solution of (1.1). The class of kernels considered in
this paper is larger than that in [1].

2. Assumptions and notation. Throughout thif paper we assume

(2.1)  kis absolutely continuous on every [0, 4), 4 > 0, k(0) = 0 and k(x) > 0
for x >0,

(2.2)  k is nondecreasing on [0, §) for some é > 0,
(2.3) geC([0, 0)), g(0) =0,
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(24) g(x) is nondecreasing and g(x)/x is nonincreasing on (0, é) for some
o>0,

(25) g(x)/x—o00 as x—=0+.
In the sequel we use the following fact:

LEMMA 2.1. Let the assumptions (2.3)(2.5) be satisfied. Then g(x) and x/g(x)
are absolutely continuous on [0, 8) for some & > 0.

Proof. By (24) for any x,, x,€[0,, d), x; < x, and d, > 0 we have

g(xx)—g(x,) _ g(xs) g(x5)/g(x)—1 _ g(do)

0< < .
xz—xl xl xZ/Xl—l 50

Hence g is Lipschitz continuous on every [, 6) (6, > 0). Therefore g(x) is
absolutely continuous on [0, §). Now we note that x/g(x) satisfies (2.3)-(2.5), so
it is also absolutely continuous.

Set K(x) = j; k(s)ds and denote by K~! its inverse.
The facts collected in the following remarks are proved in [3] and [4].

Remark 2.1. (1.1) has a nontrivial solution if and only if there exists
a nonnegative continuous function F # 0 such that

(2.6) F(x) € }k(x—s)g(F(s))ds, x€(0, 8),
0
for some & > 0.

Remark 2.2. If (1.1) has a nontrivial solution, then it also has exactly one
continuous solution u such that u(x) > 0 for x > 0. In the sequel, this solution
is called the maximal solution of (1.1).

In this paper § always denotes a small number greater than 0. We allow it
to change its value from paragraph to paragraph.

3. The necessary condition. In this section we assume

(3.1) Ink(x) is concave on (0, d).
Note that from this assumption it follows that

(32)  k(x)=®(K(x)) on (0,8), where ®=koK ! is concave.
Now we can prove

THEOREM 3.1. Let the assumptions (2.1}~(2.5) and (3.1) be satisfied. Then the
condition

s 1
3.3 —_d
(3.3) gg(s)cp(s/g(s)) s<o on (0,6

is necessary for the existence of a nontrivial solution of (1.1).
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Proof. By (2.1) the maximal solution u of (1.1) is absolutely continuous.

Therefore, in view of Lemma 2.1, g(u(x)) is also absolutely continuous.
Moreover, we have

(3.4) w'(x) = [k(x—s)[g(u(s))] ds.
4]
Now using (3.2) and applying the Jensen inequality we get

(3.3)

u1 X)) E S(K (x—3))[g (u(s))] ds

<o) ol ons)

Combining (3.4), (3.5) and (1.1) we obtain u'(x) < ®[u(x)/g(u(x))] g(u(x)), from
which by substitution s = u(x) we get (3.3).

Remark 3.1. Since & = 1/(K~!) and

(—)(K (/o) = (K~ (gl +3 (( )’ K1 (x/g (),
taking s = g(t) we see that (3.3) is equivalent to
é _— p—
(3.6) 197°6) -y (9—-1(—5)) ds < 0.
oS S 5

Now we present an example of application of Theorem 3.1.

ExaMPLE 3.1. Let k(x)=Bx"'"Pexp(—1/xf), B>0, and g(x)=
xexp(A4ln’1/x), A > 0,0 < y < B/(f+1). Then the assumptions of Theorem 3.1
are satisfied. By easy calculation we get

1 o]
g(x)®(x/g(x)) = " x(—Inx)

where C > 0 is some constant. Thus (1.1) has no nontrivial solution in this case.

for xe(0, d),

4. The sufficient condition. In this section we prove that the condition
J g
0 9(s )

is sufficient for the existence of a nontrivial solution of (1.1).
Assume (4.1) and set

4.1 “(s/g(s))ds < oo  for some & >0

F7'(x) = K™ (x/g(x g ~!(s/g(s))ds

In view of Lemma 2.1, (2.1) and (2.5), F~!(x) is absolutely continuous on [0, d).
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LEMMA 4.1. For any ye(0, 6) we have

(4.2) fK(F"(y)—F‘l(r))g’(r)dt Z Y.
0

Proof. Since, by (2.2), K is convex, we can use the Jensen inequality to
obtain

Ly -1 —F-1 ! d
(4.3) o y)(J) K(F~'(y)-F '()g (v)de

1 y -1 -1 ’ — LJ’ -1y )
K(g )£ ) -F (T))Q(T)df) K(g(y)(j,(F ) (r)g(v)dr |.

Note that

(4.4) (F™Y (g = [g@K ™ (t/g(@)]"-

Since in view of Lemma 2.1, (2.1) and (2.5), g(t)K ~*(t/g(r)) is absolutely
continuous on [0, 6), by (4.3) and (4.4) we have

fK(F‘ Yy)—F~(x)g'(x)dr = K(K~ Y (y/g(»)g(y) =
0

which completes the proof.
Now we can prove

THEOREM 4.1. Let the assumptions (2.1)-(2.5) and (4.1) be satisfied. Then the
equation (1.1) has a nontrivial solution.

Proof. Let F be the inverse function to F~!. By substitution s = F~!(1)

we get
F(x) d

Ek(x—s)g(F(s))ds j dT(K(x —F~1(0)g(r)dr.

Integrating by parts on the right-hand side and taking y = F(x) in Lemma 4.1
we see that (3 k(x—s)g(F(s))ds = F(x) on (0, 6). By Remark 2.2 this completes
the proof.

Remark 4.1. Taking T = g(s) we see that (4.1) is equivalent to

3

1

(4.5) j’;K‘l(g"‘(s)/s)ds < oo for some &> 0.
0

Now we present two examples of application of Theorem 4.1.

ExAMPLE 4.1. Let k satisfy (2.1), (2.2) and ¢~ '(x) = xK(x). Then g(x)
satisfies (2.3)+2.5) and by (4.5) it follows that (1.1) has a nontrivial solution.

ExaMPLE 42. Let k(x)=px"'"Pexp(~1/xf), p>0, and g~ '(x)
= xexp(—AIn’1/x), y > B, A > 0. Then the assumptions (2.1)}-(2.5) are satis-
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fied. Since

1 ) 1
JK g ' (x)/x)= A ”"xlnzl/x, A=/,

(4.5) is satisfied and (1.1) has a nontrivial solution.

5. Comments. The case k(x) = x? a > 0, was considered by G. Gripenberg
in {1]. His main result can be formulated as follows:

THEOREM 5.1. Let g satisfy (2.32.5) and
(5.1) for each p >0, x(g(x)/x)P is nondecreasing on [0, é,1 (6,>0).

Then the equation (1.1) with k(x) = x*, a > 0, has a nontrivial solution if and only if

(5.2) E%[s/g(s)]”‘””ds < 00.

0

It is easy to see that k(x) = x% o> 0, satisfies (2.1), (2.2) and (3.1).
Moreover, in this case (5.2) and (3.3) are the same. Noting that

g'(s)
g(s)
we see that (5.2) and (4.1) are equivalent.

Therefore Theorem 5.1 follows from Theorems 3.1 and 4.1 and our proofis

much simpler than that presented in [1]. Our results are also more general
than Theorem 5.1. For example, we did not apply the assumption (5.1).

[s/g(s)]*, AeR,

A
2 [stg(611* = £ [s/g(s)1*+
S

ExaMPLE 5.1. Let k(x) = x% o > 0. Vernfying (5.2) we see that (1.1) has
a nontrivial solution for g(x)=x%, 0 < B <1, and in the case of g(x)
= xInf1/x, B > 1, it has a nontrivial solution if and only if 8> a+1.

ExampLE 5.2. For k(x) = x% o > 0, and g(x) = xexp(4In’1/x), 0 <y < |,
we have

1
—}[s/g(s)]”“'*” = ;exp(-—Cln"l/s), C = Af(a+1).
By substitution z = ~Ins we get
1 ® )
j;exp(—Cln?l/s)ds = [ exp(—Cz%)dz < o,
0

—~Iné

for y, C > 0. Therefore (1.1) has a nontrivial solution in this case.

It is clear that under the assumptions (2.1)~(2.5) and (3.1) the condition
(5.2) implies (4.1). This can also be seen by the comparison of (3.6) with (4.5).
Namely, by (2.1), K~! is concave and K~ '(0) = 0. Hence we have

(5.3) 97" -1y <M> <K (g—l’ﬂ) xe(0, 8).

X X X
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Unfortunately, in general, this implication cannot be replaced by equivalence,
as the following example shows.

ExaMPLE 5.3. Let k(x) = x~2exp(—1/x), g(x) = x*, 0 <y < 1. Then

s =1 -1
i (x)(K-l),(g (x))=_d_(1<'1(x‘))

x X dx

Le-rfgtGN _ 1
X x Ax(—In x)’

where 4 = 1/y—1. Hence (3.6) is satisfied and (4.5) is not.

and
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