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Introduction

This paper (!) deals with the classical predicate caleulus .&7* of the
second order which contains as primitive signs individual variables,
set variables, the sign for the universal set, the sign for the empty set,
the signs for set-theoretical operations on sels, the sign for the identity
of individuals, the sign for the equality between sets and the gign for in-
clusion, propositional connectives and quantifiers binding individual
and set variables. The set of axioms is composed of logical axioms and
of axioms which characterize: the universal and the empty set, the oper-
ations on sets by means of propositional connectives, the identity rela-
tion between individuals, the equality relation between sets and the
relation of inclusion. Usual rules of inference are admifted.

It is shown that &* is the theory of fields of sets, i.e. a formula is
a theorem in * if and only if it is true in every field of sets, when set
variables are interpreted as variables ranging over a fixed field of sets
and quantifiers binding set variables are restricted to- sets belonging
to the same field of sets. Moreover, a formula of &* which does not con-
tain any individual variables and quantifiers binding individual varia-
bles is a theorem in %* if and only if it is a theorem in the elementary
formalized theory of Boolean algebras.

Let & be a propositional non-classical caleulus which contains the
disjunction sign, the conjunction sign, the implication sign and perhaps
some other propositional connectives. We assume that all theorems of
positive logic are theorems of .. The system % determines a class of
abstract algebras (called &-algebias) which are matrices of &. The system
& determines also a corresponding system .9* of the second order pred-
icate calculus analogous to the classical system described above. Under
gome additional hypotheses concerning the propositional calculus &,
an intepretation of the system &* in question is suggested and the com-
pleteness theoremm with regard to this interpretation is proved. More-
over, it is shown that a formula of the form 4 =B, or 4 € B is a the-
orem in .7 if and only if it is a theorem in the elementary formalized
theory of #-algebras based oun .7-logic.

(1) For a summary covering a part of {he results given in this paper,
sec [3].
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It remains an open question whether this statement is true for ar-
bitrary formulag without individual variables and quantifiers binding
individual variables (p. 27).

Note, that as the propositional caleulus & we can admit, for in-
stance, the positive, minimal, intuitionistic or modal S4 propositional
calculus,

§ 1. System % of a propositional calculus

We shall consider a fixed system & (sce [5]) of a propositional cal-
culus described briefly as follows:

The primitive symbols of . are propositional variables a,, a,, ...,
parentheses, and the following propositional operators

(a) the disjunction sign u, the conjunction sign n, the implication
s1gn =

(b) some other binary propositional operators oy, ..., 0,;

(c) some unary propositional operators o!,..., 0°.

The sets of operators mentioned in (b) and (¢) may be empty.

The set & of all formulas in .% is the least set such that

(i) @;j are in & (j=1,2,...),

(ii) if a, f are in &, then so are (aup), (anf), (a = fi), (u0;f)
(i=1,...,7), ('a) 1 =1,...,8).

Instead of ((« = f)n(f = a)) we shall write for brevity (u == p).

In writing formulas we shall practice the omission of the parenthe-
ses, the rule Dbeing that

1. each of the operators n, U, = binds an expression less strongly
than the previous one;

2. each of the operators o* (i =1,...,8) binds an cxpression more
strongly than any binary operator.

In the set # of all formulas we distinguish a subset I < # of all
theorems. We shall assume that the set .7 fulfils the following conditions:

(t,) if a and a = f ave in I, then B is in 7 (modus ponens);

(te) if v is a part of a, if y = & and & =y are in .7, and if B is ob-
lained from « by ihe veplacement of the part y by o, then formulas a = f
and f = a are both in I (the rule of replacement);

(ta) if «, By y are in F, then each of the formulas T-Ty given below
i i 7

Ty (a=p)=(f >y) > (a=>y),

T, «a=a0f,
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T, f =uvYf,

Ty (=) = (B =y) = (wf = y),

T, anf = «,

Ty anf =4,

T, (v =a) =>((y = f) = (y > anp)),

Ty (o = (8 =) = (unf =),

Ty (anf =) = (a = (f > y));

(t,) the set F-T is non-emply.

The formulas T,-T; are the axioms of positive logic (see [1]). Conse-
quently all formulas which are substitutions of theorems of the positive
propositional calculus are in 7. In particular the following formulas
are in J:

Ty « = d,

T, «=(f =a),

T (a=(f=7) = =>(=7),

T« = (f = (anf)).

Note that the condition (t,) imnplies the cxtensionality of all propo-
sitional operators mentioned in (a), (b), (¢).

If among unary propositional operators there appears an unary
operator — for which the following condition is fulfilled:

(1) —(f=fB)=>aising for any a,f in F,

then it will be called a negation sign and & will be called a propositional
caleulus with negation. (See [5], p. T4).

The propositional calculus & will be said to be axiomatizable if there
exists a recursive set & of formulas in & such that the set J is the least
set of formulas satisfying the conditions (t,)-(t,) and moreover the fol-
lowing one:

(ts) T contains cvery formula obtained from formulas in 2 by an arbi-
trary substitution for propositional variables of any formulas in F.

§ 2. System ./*

With the system % of a propositional calenlus we shall associate
a non-elementary systom % which is a gencralization of the classical
calculus of classes.

The primitive signs of % are the parentheses and

(a) the free individual variables denoted by x;, %3,...;

(a’) the Dbound individual variables denoted by &, &qy ..
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(b) the free set variables denoted by Iy, F,,...;

(b’) the bound set variables denoted by ¢;, pa,...;

(¢) the symbolV for the universal sel;

(d) the symbol A for the empty set (if & is a propositional calculus
with negation);

(e) the symbol = for the identity relation between individuals;

(f) the symbols U, ©, =», 04,...,0, for Dbinary operations on
setbs;

(g) the symbols o!,..., 0" for unary opcrations on sets;

(h) the symbols for binary relations between sets: the sign < for
inclusion and the sign = for equality;

(i) the propositional operators in .¥°: U, n, =,0,,...,0,, 0}, ..., 0%

(i) quantitiers Us,s My Ugr Ny (6 =1,2, ...

TFrom these signs we form expressions of two kinds: set designations
and formulas.

The set 2* of all set designations i3 the least set containing
I (k=1,2,...), V and A (if A appears among the primitive signs of
&*) and such that if 4, B are in 2*, then (AUB),(40B), (A—»B), (40,B)
where i =1,...,7, (0"4) for i = 1,..., s are also in 2*,

In writing set designations we shall practice the omission of the
parentheses, the rule being analogous to those mentioned in §1 for for-
mulas in &.

The set #* of all formulas is the least set such that

1) if A is in 9%, then A(z,) is in F* (k =1,2,...);

2)if A, B are in 2%, then (4 =DB) and (4 c B) are in F¥*,

3) (x, = @) is in F* (k,m =1,2,...);

4) if a,f are in &F* then (aup), (anfl), (a = B), (a0, f) for k =
1,...,7, (o®a) for & =1,...,8 are in F*;

5) if a(x) is in F* and neither (M nor (Jy; appears in u(a;), then
Ue; a(@/€;) and (e a(@/&;) are in F*, where u(z,/&) is the expression
obtained from a(x,) by the substitution of & for z;

6) if «(F) is in #* and neither U,,,j nor ﬂw appears in ‘a, then
Uy a(Frlp;) and M, a(Fifp;) are in F*;

We shall sometimes write (u = f) instead of ((a = f)n(f = u)).
We shall also practice the omission of parentheses, the rules being the

same as those adopted for the system & and additionally the following
rule.

3. The quantifiers bind more strongly than any operators meniioned
m (i) above.
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The axioms of 7* are all formulas obtained from the axioms of &
by the substitution for propositional variables of arbitrary formulas
in #* and, moreover, the following formulas:

cl nfl v

(€a) Mg, (A E ) => — V(&) (if ¥ is a propositional caleculus with
negation),

() M, (Fu!ﬂ (&) == (Fy(£)0Ty(8,))),

Ne, ((Fuoly) (P NP (&)

mLI (( Ty = I,) (Ir’l(el) = Fy(41))),

(Co) nkl( 10,00, (&) = (If' Dorle (&) (h=1,...,7),
() Mg, (087 (&) = (" (Fu(£0))) B=1,..., ),
(cy) (['y € [y) == ﬂ LI (&) = Ty(&),
(cy) (Fy=T,) == (F, € P)n(F, c Ty),
(¢10) ﬂsl & = &),
(en) N, Neg N ((61 = &) = (&0 = &) = (&, = &),
(esa) M, Ny (FrlE)N(EL = &) = Fi(&y)). '

The set 7 * of all theorems of &* is the least set of formulas con-
taining all axioms and fulfilling the conditions (t,), (t,) mentioned in
§1 and the following ones:

(t3) of a(m,) is in T* then a(z/zy) 8 in T*,

(t3) if a(Fy) is in T*, and A 8 in D*, then a(Fy[A) is in T*;

(62) if o = ﬂek (X[ Ex) 18 in T*, then a=B(z,) is in T*; if
w=> (Vo B(Fnlpr) ts in T*, then a = B(Fy) is in T*;

(66) of Ue, ol@n/&) =>ﬂ is i T*, then a(w,)=>f is in T¥*;if
U, a(Fulpe) = 18 in T*, then a(Fy) = p is in I

(t7) 4 a = f(w,) 48 in T* and neither (J,, nor (M, appears in fi(xy)
and, moreover, thmc is mo ocowrrence of &, in o, then a = ﬂekﬁ(w,,./fk
is in T¥; if a= f(I,) 18 in T*, neither (,, nor U, appoars in B (Fop)
and thcw 18 Mo oc('uncm'e of Ty 0 a, then a= (Y, B (Fufpe) 8 10 T uH

(tg) if a(x,) = f is in T°*, neither (M g Nor Ue,c appears in a(a'.,,,,) amd
there is no ocourrence of @,, in B, Hmn U, a(@n/&) = BisinT*;if a(Fn)=f
i i T¥, neither (M, nm U, appeams in o Fy,) and there is no ococurrence
of By in B, then \J,, a(Fulp;) = f is in T*

(t3) for any A Be.@*, if A=DB is in T*, then the formulas 0’4 = o'B
Jor i=1,2,...,8 are in T*,
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(to) for any A,B,C,De2* if A=DB and C=D are in T* then
40,C=BoD for i =1,...,7 are also in T*,
It is easy to show that also the following condition is satisfied:

(831) if a is the result of a substitution for propositional variables of any
ormulas of F* in a theorem of &, then a is a theorem of S *;
b )

(t1s) if a(®,,) is in T* and neither (g, nor Uy, appears in a(z.,,), then
ﬂ;k (@[ &) T8 in T*; if a(Fy) is tn T* and neither (), nor ), appears

n a(ll,), then (), a( ,,,/rpk) 18 1n T *,
It is also easy to prove that the following formulas are in .7*;
(T7) Fy=F,,
(T3) (I, = ) (Fy=F,),
(T3)  (Fr=TFy) = (Fy=Ty) = (¥, =Ty)),
(I3)  (Fy=TY) Ifs—Jf > (IO Fy) = (F, 0 1)),
(T2) (B, =1, = ( (Py = F,) = (P, 0F,) = (F,nF,),
(T8)  (Fy=Fy) = ((Fs = Fy) = (F,— Fy) = (F,— 1))
(T7)  (FLUF,)=(F,0TF,),
(T:) (FL.OF,) = (I,0f),
(T;) (F1U(F2UF3))=((F1UFQ)UF3);
(Th) (I, 0(F,0F,)) = ((F,0F;) N T,),
(Th) (F1O(F1UF2))=F1’
(T%) ((FLOF)OF,) = F,,
(Th)  ((F1OFy) € Fy) = (F, < (P~ Fy)),
(Ti) (I cFy) = ((F,0 T, 1),
(T35 (FJCF2)E(( ""'I') )
(Th) F,cV,
(T, Acl (it . is a propositional caleulus with negation),
(T Fi—>F =Y,
(Th) —(Fy=>F))=A (il 7 is a propositional caleulus with negation).

Lot (4, ..., a; ) De a formula of .7 and let iy +ey 4, De all propo-
sitional va,lm,ble.s oc(-mung in «, Substituting for evmy a,j ( J=1,.,m)
in « a formula 7, s(#) where &y is au arbitrary free individual va,l‘m.ble
we obtain the for mula

u (Iﬂ‘il (r)y ey F"'n (‘I!"“))
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of .&*. On the other hand, replacing in w(ay ..., a; ) every occurrence of
the propositional variables @i, (j=1,...,m) by the set variable sz,
and every propositional operator U, n, =, o, (k=1,...,7), o*
(k=1,..., §) by the set operator U, N, =, 0, (k=1,...,7), o*
(k=1,...,8), respectively, we obtain the sct designation

DFy,...,F;) in 2*

2.1. The formula «(Fy (@), ..., F; (2) = D (Fipy ..y Fy) (@) is in
the set T*.

The easy proof by induction on the length of « is omitted.

2.2. If a(ag, ..., a;,) s a theorem of &, then the formula D, (F;,,

oy By )=V is a theorem of F*.

Indeed, the formula o (Fy (), ..., F; (#;)) is an axiom of 5* and con-
sequently is a theorem of .7*, Hence, by 2. 1 T, and (t,), D (11b o 1) (@)
is a theorem of .77*. (Jonbequently, on account of Ty, (tu) and (6y1)
the formula V(av,ﬂ) = Do(Fy , ..., F; ) (@) is a theorem of &*. On the other
hand, by (¢,), T;, and (t*) (1‘{ yoeey Iy ) (@) = V(x) is also a the-
orem of &*. Thus, by (t}), ﬂel( Pi, Py )(E) = V(&) is in T7*
and (N, (V(&) = D (Fy, ..., F §1) is in 3’* Hence, by (cg), T3 and
(¢p), 2.2 holds.

§ 3. 7 -algebras (2)

With the system .’ of a propositional calculus we shall associate
a type of abstract algebras. Hach algebra of the type under consideration
is an ordered set {75 V, U, N, =, 01y...y0p, 0!, ..., 0°) Where

(a) V is a distinguished element of #,

(b) v, N, =, 04 ...,0, are binary operations defined over & and
class-closing on .«

(e¢) o', ...,0" are unary operations on .« and class-closing on 7.

For convenience, we shall denote such an algebra by the same let-
ter as the set of its elements, i.e. we shall write “the algebra &/ ” instead
of “the algebra (o/; V, U, ..., 0",

Any wmapping v: P — .o/, where P is the set of all propositional
variables of . will be called a valuation of propositional variables in
an algebra /. Any formula « in & determines uniquely an operation

>
Uy P > o

(3) See [5], p. 07.
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defined inductively as follows (3):
a7 (v) = v(a;) for any ¢ =1,2,... and every »: P — &/,
(BUy)ar ( = Bor (V)Uyw (),
(Bop)a(®) = Bor (V)Y (V)
(B = 7)»1(?) B (V) = v (),
(Borp)e (0) = (D oryw(v), k=1,...,7,
(0"F) (v) = " (B (@), T =1,... s

The algebra & is said to be an .-algebra il the lollowing conditions
are fulfilled:

i) a=>b=V and b =a =V imply a =0,

(li) it V ==a=V, then a = V,

(iii) if « is in J then a,(v) = V for every »; P -» .o/,

An S-algebra is said to be non-degenerated if it contains at least
two elements.

In the rest of this section the letter &7 will always denote an .#-al-
gebra. Let a,bes’/. We shall write a = b whenever a = b = V. The
following theorem is known (see [5], 3.1 and 7.1).

3.1. Ivery S-algebra & is a relatively pseudocomplemented latlice with
respect to the operations “U” (join), “n” (meet) and “=-" (relatively pscudo-
complementation). The relation a < b is the ordering relation in the latlice
& (t.e. a < b if and only if aVb = D). The element \/ is the unit of the lat-
tice 7. Moveover, if & is a propositional caleulus with negation —, then the
element —\+ = A 18 the zero clement of &/, i.e. A = —V < a for every
a in .

We will show that the following theorem holds

3.2. If & is an awiomatizable proposilional calewlus fulfilling (b,)-
(ty), then the class of all 7-algebras s equationally definadle, i.e. there exisis
a reaursive set of axioms for F-algebras such that each axiom has the form of
O equation.

Let us suppose that there exists a recursive set 2 of formulas in
# such that the set 7 is the least set of formulas satisfying (t,)-(t;) (see
§1). It is easy to prove that the set of equations composed of axioms
for relatively pseudocomplomented lattices )

(®) By this definition, agr is o mapping from & into «. Ou the other hand, if
P, is the set of all propositional variables appearing in «, aw can also be considered
as & mapping from #Fe into &, since in reality it depends only on those variables
which appear in a.

() These axioms are dual to tho axioms given in [2].
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aVh = bua, andb = bna,
(aub)ue = au(bue), (and)ne = an(bne),
(anb)ob = b, an(awd) = a,

(an(a = Mjvb =b, an(b = (and)) = a, (@ = (bno))u(a = 0) = a =0
and of the equations
(1) wy, =V for every « in %,

is the required set of axioms for the class of all -algebras, In (1) ay is
treated as a mapping from .=/*e into & (see footnote 4, p. 10).

If an Z-algebra o/ in o complete lattice, then 7 is said to be an
S*-algedra (cf. [B], p. 08).

A mapping & of an Y-algebra & into an &-algebra &' is said to be
an #-homomorphism, if it preserves all finite algebraic operations, i.e.
if h(aob) = h{a)oh(b) where o iy one of the signs v, n, =, o4, ...,0,,
and h(oa) = oh(a) where o is one of the signs o!, ..., 0°. An #-homomor-
phism is called an #-isomorphism if it is one-to-one. An -homomorphism
b is said to preserve the infinile join (meet)

o = UmU Uy, (@ = (Vuerr Bu)
if '
ha) = Uuer Blay) (h'(a') = (U wu)'

The system & i8 said to have the property (E) (ef. [6], p. 69) if, for every
Z-algebra o/ and for arbitrary enumerable sequences of equations

(%) Oy = UmUn Oy y by, = mweWn Unaw s
there is an &-isomorphism % of & into an &*-algebra 7’ which preserves
all the joins and meets (*).

§ 4. The algebra of set designations of &*

Let us consider the set @%* of all set designations of 9 as an abstract
algebra (2%, V, U, 0O, =», 01,..., 0., 0%, ...,0°). We will prove that
4.1. The relation ~ defined for any A, B in 2% by the equivalence:

A ~B if and only if (A=B) is in T*,

18 @ congruence relation tn D*.
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In fact, it is an equivalence relation by (T7)-(T3). By (T%)-(1%)
and (t¥), (t) this relation preserves all algebraic operations in 2*,
Consequently it is a congruence relation in 2*.

Consider the quotient algebra 2*/~. It ig formed of all equiva-
lence classes [A], Ae2* of the relation ~. The class [A] iy composed
of all designations B such that 4 ~ B. Werecall that the algebraic oper-
ations in 2*/~ are defined as follows:

[A]o[B] = [40 B], [A]n[B] =[4nB],
(1) [A]—»[B] = [A=»B], [A]o.[B]=[4do.B], Lk=1,...,r,
oF[A]=[0"4], T =1,...,¢.

For any [A], [B], let us set
[4] <[B] if and only if (4 c B) is in 7%,

1t is easy to show that if (4 ¢ B) is in 7%, 4 ~ 4, and B =~ B,, then
(4, € B,) is also in 7*. Consequently, the definition adopted above
is correct.

4.2. [A] < [B] if and only if [A]—» [B] = [V].

This is an immediate consequence of (T7;).

4.3. [A] < [B] if and only if [A]l0[B]=T[4].

This follows directly from (T7,).

4.4, The algebra (D*|~, [V], U, O, =», 015...,0,,0", ..., 0" is
an #-algebra with the sct of generators [[], k= 1,2, ..

By (T5)-(T%), it is a lattice. It follows from 4.3 that Ghe relation
< 1is the lattice partial ordering relation. Thus, by (T}) the class [V]
is the unit of this lattice. By (T};) the algebra (2*/~, [V], O, 0O, =)
is a relatively pseudocomplemented lattice with the unit [V].

It follows from 4.2 and the fact that the relation < is the partial
ordering in the lattice in question that condition (i) for &-algebras iy ful-
filled. On account of 4.2, since [V] is the unit of the lattice 2%/~=, we
infer that also condition (ii) for ~-algebras is satisticd. To prove that con-
dition (iii) for .7’-algebras is fulfilled, suppose that a formula a(a;, ..., a;,)
of the propositional caleulns . is in 7. 1lence, by 2.2, D, (F, ..., I';)
= V is in Z*. Let » be an arbitrary valuation of Ghe propositional var-
lables of .7 in the algebra 2*/~. Suppose that o(a;) = [A], ..., v(a;)
= [4,], where 4,, ..., 4, are in @*, By (t}) the formulw D, (4, ..., 4;)
= V is in .7* Consequently (D, (4,,...,4,)] =[V]. By (1) and the
definition of wp.,~(v) we get «pe~(v) = [V], which eompletes the proof,

We shall prove in § 5 that the algebra (2*/~, [V], U, O,>,
Oy ...y 04,0, ...,0% is a free .-algebra.
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§ 5. Models of the system .9*

We shall assume in the sequel that the system & of a propositional
caleulns described in §1 is axiomatizable and that it has the property
(EB) defined in § 3. Let I Dhe a non-empty set and let

. s
<'ﬂ, V, U, ﬂ, :), 01’-n¢ 0’-,01’.-.,0>

be an #*-algebra. The set & can be concelved a8 the set of logical values.
Consider the product of algebras «’. Since, by 3.2, the class of S-alge-
hras is equatwnally definable, ' i3 an Z-algebra. Let us fix a subalge-
bra # of «7'. It is algo an Y-algebra. The elements of # are functions
f: I — ./, i.e. functions associating with every element j of I an element
f(4) of the algebra /. These functions can be treated as a generalization
of characteristic functions of sets and will be called «7-characterisiic func-
tions on I. In particular, if .’ is the classical propositional calculus and
the v*-algebra .7 is the two-element Boolean algebra, then «7-character-
istic funetions on I are characteristic functions of subsets of I, in the
usual sense.

Iivery «7-characteristic function f on I determines an «/-subset I, of I
in the following sense: for everyjin I the sentence “j belongs to I;” has the
logical value f(j)es’. In particular, if f(j) = V , then this sentence is true.
Of course, «-gubsets of /, where ./ is the two-element Boolean algebra,
are subsets of I defined by the characteristic functions f: I —» &/, and
a subalgebra & of o7 is then isomorphic with a field of subsets of 7. The
mapping % defined by the equation 4 (f) = I, is the required isomorphism.

It seems therefore that subalgebras of /7 can De treated as a gener-
alization of fields of sets and will be called «/-fields.

We are going to describe interpretations of the system * in a set 7,
in an 9*-algebra « and in a subalgebra & of »’. Every function ¥ from
the set I of all free set variables into # will be called a #-valuation
(c]ea,rly, V (F)) < #). It can be extended to the set 2* of all set; designations
as follows. Let us set

() V(V)= Vp where Vp is the unit element in #;
(2)  V(A) = Ap where Ay is the zero element in %, in the case where
< is a propositional calenlus with negation;
(3) for any 4, B in 2*
V(Ao B) = V(
V{(AAB) = V(4A)nV(B)
V(A=»B) = V(4) = V(B)
V(doB) = V(4)o,V(B), Lk=1,...,,7,
V(0"A) = o"V(4), k=1,

A)WV(B),
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Thus, for every set designation A4, V(4) is an element of # and conse-
quently of &/, i.e. an ~/-characteristic function on /. Every function v
from the set X of all free individual variables into I is said to be an
T-valuation. Thus veI™.

Let 9N be a mapping which associates with the primitive signg =,
c, = in &* a two-argument function =g from I into ./, a two-argu-
ment function cg, from # into & and a two-argument function =g,
from 4 into &7, respeetively. Then with every formula « in &* we can asso-
ciate a functional ay on @B% x IV, where I is the set of all free set variables
and X is the set of all free individunal variables, with values in .o/. Thiy
functional is defined by induction on the length of « as follows,

(7 = B)g(V,0) = (p(w) =go(@)), k1=1,2,...,
(A € B)y (V, v) = (V(4) gV (B)) for any A, B in 2*,
(4) (A= B)y(V,v) = (V(4)=qV(B)) for any A, B in 2%,
(4 () (V 'v) = V(4)(v(x)) for any A in 2*and k=1,2,..,
(a0f)(V, ) = ag(V, v)oBu(V,»)

where o on the left side of this equation is any binary propositional oper-
ators in &* and o on the right side is the corresponding operation in the

algebra .o,
(B) (0a)p (V, ») = o(ay(V,»))

where o on the left side of this equation is any unary propositional oper-
ator in %* and on the right side is the corresponding operation in the

algebra 7.

(Us,a(Em (V' 0) = Ujer am()(V, 0),

(6) (MealENm (Y, 0) = Mjar an(G)(V, 0),
(Um,,,ﬂ(ff’/r))we(v, v) = U am (H)(V, 0),
(mqq, a(qﬂ,,))w(V, v) = Nremam(NV,2), k=1,2,..

A mapping M deseribed above will be said to be amodel of 7* provided
for every axiom a of ¥* the condition

(7) wp(Vy0) =

is satisfied for every #-valuation V and for every 7-valuation .

The following theorems arc easy to prove:

5.1, M ds a model of % if and only if condition (7) is satisfied for
the axioms (¢y), (ca), (Co)y (C11), (C1a).
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5.2. If M is a model of 9* and a formula a is in T 3", then condition
(7) is satisfied.

5.3. If DM is a model of 9*, then for any f, geB

(i) (femy) =V o and only if f <y,

(i) (f=mg) =V if and only if f =g.

B.4. If M 43 a model of 7* in a set I in an S*-algebra o and in 77,
and & 18 a propositional caleulus with negation, then =g is the character-
istic function of the relation of ideniity.

The equality (j=gy j) =V follows immediately from the axiom (c,,).
To show that (j =yt)=A for any 4, in I, 4 % j, suppose (j, =gi,)
= ae o/ for some 4,,j eI, where 4, # j, and a # A. Let f be a funection

from I into o/ such that f(j,) = V and f(i) = A. Of course, fe s’
Let V be an .&7’-valuation snch that V() = f and let « be the axiom

(cy5). Then
(I.JR(V, 'D) = ﬂ-ie]’ n]'ef (f(?/)ﬁ(’b' =!lﬂj) ¢f(j))‘

Sinee f(jo)N(Jo =mt) = f(l)) = Vna = A =a=> A #V, an(V,v) # V.

Using the notation of 2.1 and 2.2 we can establish the following the-
orem.

5.5. For any formula u(ay, ..., a,) of &, if the formula D (Fy,..., F,)
=V ig in T*, then a(a,, ..., a,) is a theorem in &.

It follows from the hypothesis and from the axioms (c), (¢,) that
the formula (¢, (Du(F4y ..., F)(&) = V(&) is in 9%, In consequence,
V(z.) = D (P, ..., F,)(x;,) i8 also in J*, By (c,) and 2.1 the formula
a(Fl(mk), ceey Fﬂ(w,‘.)) ig in Z*. Let us suppose that a(a,,...,a,) is not
any theorem of . Then (°) there exists an S -algebra ./, and a val-
uation v of propositional variables such that a(ay,...,a.)w,(v) =0,
where bes/,, b #V . Let o/ be a complete S -algebra which is an exten-
sion of «w/, and let T be an arbitrary non-empty set. For every element
a in of, let us set f,(j) = a for every j in I. Thus f,e «/’. Let us set for
any f, ge o7

Vit f<yg, v it f=y,

(f=wyg) =

.C\ — .
[/ € ) A in the opposite case, nHE Y.

Let =g be the charactoristic function of the relation of identity. Then
M is a model of &*in I, o7 and «7. Let V be an o-valuation such that
V(Fl) =f!'(u1)1 A V(F'n) =.f'v(a.n)' Then we have

a(Fy (@), ooy Bu(@e))(V,0") = b for any I-valuation v".

Hence, by 5.2, a(F, (), ..., Fu(®)) is not any theorem in 5.

(5) For instance, the Lindenbaum algebra for the propositional caleulus &
satisfies this condition.
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COROLLARY. If & is decidable, then the set of all formulas in 7* of 1he
form A c B, A=DB, where A, Be 2% 1s decidable.

This follows from 5.5, 2.2 and (1) § 2.

Given an arbitrary term 4 (Fy , ..., I ) in 2* let us replace the set
varviables Fy , ..., Iy, by propositional variables a,..., a , respecti-
vely, V —Dby (@ = ay), A by —(a; = a)) and O, O, =>, 0y,..., 0, 0%,
iy 0° DY Uy, =, 0p, .0 00,08, .., 00, Tespectively. Then we obtain
from A(Fyy..., Fr,) 2 formula «* of the propositional calculus &,

It is easy to show by inductive argument making use of (T7), (T},)
and (t4), (%) § 2, that

5.6, For any term A, the forinula A =D , is a theorem of 7%,

We shall prove the following statement. Let # be an arbitrary
&'-algebra and let & be an Y*-algebra which is an extension of #4. Then
4 can bhe considered as a subalgebra of s’ , l.e. as a subalgebra formed
of all functions f,: I — o7, ae #, where f,(i) = a for each 1el.

5.7. For any terms A, B in 2%, if A =B is a theorem of &*, then for
every valuation V in every 9 -algebra %

V(4) = V(B).

Suppose that A = B is a theorem of .9*. Then, by (¢,) the formulas
A c B and B c A are theorems of %%, and consequently by (T}) the
formulas A—»B= V and B—» A = V are also theorems of .7*. By 5.6
the formulas D 4= D =V and D z— D 4=V are theorems of 7*.
By 5.5 the formulas ¢ = o and «” = o are theorems of the propo-
sitional calculus &. Hence, for every valuation » of propositional variables
of ¥ in every % -algebra %,

(8) az(v) = ajg(v).

Suppose that there exists a valuation V in an $-algebra 4 such that
V(4) # V(B).

It is easy to see that for the valuation » defined as follows

v(m) = V(F), k=1,2,..,
we have
az(v) = V(4) and ad(n) = V(B),

which contradicts (8).
5.8. The algebra (Z*|~; [V], U, O, =>, 0,...,0,, 0}, ...,0") 18
a free S-algebra with generators [F1, k=1,2, ...
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Let b be a mapping from the set of all [¥)], & = 1,2,..., into an
- algeb]a Z. Tt can be cextended to the homomo1phlsm of the whole
algebra 2*/~ into # by means of the formulas

h(TAJO[B]) = h([A]VR([B]),
hMIATALB]) = h([A])n([B]),
h([A]=> [B]) = ([4]) = A([B]),
h([A]o, [B]) = M[A)) o, ([B]), k=1,...,r,
h(o.[A]) = o, h([4]), k=1,...,s,
MLV =V, I[A]) =

This definition is correct, since by 5.7 the condition [A] = [B] implies
that h([4]) = h([B]).

§ 6. Completeness theorem

Suppose that ¢ hay the properties mentioned in § 5. Let us set for
any formulas «,f of &*

(1) a~f if and only if (u = f)eZ* and (f = a)eT*.

It is known (see [5]) that ~ is a congruence relation in the set # of all
formulas of .¥* with respect to the logical operations v, n, =, 04,...,
0ry 01, ..., 0", The quotient algebra

S = (F [~y Ny Uyny =04y .00, 0,, 00, ...,0%,

where V = [a: «eZ*], is an S -algebra. The elements of o7* will De

denoted by |ua|, ae #, ie. |a] = [f: a ~A]. It is known that {#/~,
V, U, n, =} is a relatively pseudo-complemented lattice with the unit

element V. Thus we have

(2) la] =V if and only if aeT*.
Moreover
(3) la| < if| if and only if (a = fi)eT*.

The following equations hold in.o*, where X is the set of all free indi-
vidual variables

(1) Mg, e/l = Maex [a{® [
(5) lUE, (@)l = Usrex [ (2m/®)]
(6) |n¢, a(FPfoe)l = Maeadla(Fun/4)],
(7) U g a( Fonfopr)] ’;UA«J*W( ] A -

Rozprawy Malemalyczne XLII B N ;,' j
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Since % has the property (1), there exists an .#-isomorphism A of
&/* into an S*-algebra o preserving all infinite joins and meets (4)-(7).
Thus we have

(8) hln.ﬁk a(@n/ée)]l = Naex Ma(@y /),
(9) RUg, a(@nfée)l = Uzx bla(zn /@),
(10) h‘nqu a(lomfpe)| = hAe@* hla(Fpl4)],
(11) MU gy, 0 (B )l = Uteae hla(Fn/A)].

We are going to define an interpretation of ¥* which will be called
-2 canonicul interpretation.

Consider the product &/~ where X is the set of all frec individual
variables. The elements of &#* are functions associating with every free
individual variable ; an element hla| of o/, Let % be the subset of &~
formed of all funections f,, Ae2*, defined as follows

(12) fal®y) = h|A(z)| for any X,

Tt is easy to see that & is a subalgebra of «7*.

We shall define the canonical interpretation M in the set X, in the
S*-algebra &, and in the s7-field #. Viz. let =y, cy, =, be functions
defined by means of the following equations

(13) (2, =g @m) = hlzy = @,| for any Lyey &y, 0 X,
(14) facufpr="HhA cB| forany A,B in 2%,
(15) fa=n fe="hA=B| forany A,B in 9*.

Observe that any X-valuation v of free individual variables can be
treated as a substitution for free individual variables. Moreover, every
#-valuation V of free set variables determines a substitution bV
for free set variables defined as follows:

(16)  if V(&) = fy, then we set sbV(F) = A, k=1,2,...
It is easy to show that for any set designation Re2*
(17) V(B) =fnl|l'(li‘)-

For any formula a, let sb Voa denote the formula obtained from «
by performing the substitutions » and sbV. Then

(18) am(V,v) = hisb Voaql.
In faet, if 4 ¢2* and « is the formula A {ay,), then
a‘m(V, 'U) = A(mk)\m(v, ’U) = V(A)(?J(mk)) =fﬂhrr(‘.”('f’({n]‘-))
= h|sbVvA (2)| = h|sbVua| by (17) and (12).
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If « is the formula A4 ¢ B for any A4, Be2*, then

ay(V,0) = (4 € Blg(V, v) = V(4) ey V(B) = furwu) S form
= hisbV(4) € sbV(B)| = h|sbV (4 c B)| = h|shVv(4 c B)|
= hlsbVo«|, Dby (17) and (14).

The case where « is the formula 4 = B can be proved analogously,

by making use of (17) and (15).
If « is the formula a;, = x,,, then we have

a.m(V, n) = (1, = mm)ﬂ):(V) v) = (?’(xk) = ‘JJI"-’(mm)) = h|v (@) = V()]
= h|sbVo (2 = x,)| = hlsbVoa].

Suppose a is a formula fuy and (18) holds for # and y. Then

ug(Vy 0) = (Buy)m(V,0) = B(V, v)uym(V, v)
= hisbVup|Uh|sbVvy| = h|sbVofusbVoy|
= h|sbVo(fuy)| = h|sbVwva].
The case where o is a formula fny, g =¥, foyy for j=1,...,7,
o'f for j =1,...,8 can be proved analogously.

Suppose a i a formula (M, A(£;) and (18) holds for . Then by (8)
and (4)

e (Vy0) = MNarex @) (V,0) = Nzex hIsbVop(2)

=1 m:rsXISbV'”ﬁ(Ea: N =hl Mg sbVVE (&
= hisbVo(),, B(&) = hisbVval.

The case where « is a formula () & B(&x) can be stated analogously,
by making use of (9) and (5).
Suppose « is a formula (M, A(p) and (18) holds for A. Then we have
by (10) and (6)
a(V,2) = Myeabu(H(V,9) = Naecgbu(f)(V,0)
ﬂmmMst’vﬂ | =2 aca|sbVv(A4)]
= hI(,, SO V0B (i)l = hIsbVo( )y, B(pi)| = hlshVoul.

The case where a is a formula (J,,f(px) can be stated analogously.
It follows from equation (18) that M is a model. In fact, if a i3 an
axiom, then shVwva is a theorem of .#*. Hence, by (2), for every X-valu-

ation v and for every #-valuation V

ag (V,0) = hisbVova| = hV = V.
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On the other hand, if « is not any theorem, then hle| # V. But for
the valuations V, and v, defined as follows

Vo) = Iy, volar) = @y b =1,2,...
sbVva = «. In consequence ay(Vy, V) = hla| # V.

Thus we have proved the following theorem.

6.1. M s o functionally free model for I*, i.e. for any formula a of
&*, o is a theorem of 5% if and only if ay (V,0) = V for every X-valuation
v and for every #-valuation V.

It follows from 5.2 and 6.1 that

6.2. For any formula a of % the following conditions are equivalent:

(i) a is a theorem of 9%,
(i) a is valid in every model of %,
(iii) a 48 valid in the model M from 6.1,

(iv) a i valid in every model in an enumerable set I, in every S*-
algebra o7 and in every subalgebra % of AN,

§ 7. Formalized theory of ficlds of sets

In this section let .¥* Dbe the classical propositional calculus. Then
the algebra &/* described in § 6 is a Boolean algebra. Suppose that a for-
mula, A is not any theorem of .°*. Hence, by (2) § 6,

(1) 1Bl # V.

Since &7* i3 enumerable, it is known (see [4]) that there exists a prime
filter IV in «/* which satisfies the following conditions:

(2) pleV,

(3)  if Uzexla(@)] = [Uga(&) eV, then there exists =, eX, such
that |a(z,)| eV,

(4) i Uscodla(4)] = Uy (g e, then there exists a set: designation
B such that |a(B)|V .

Let A be the homomorphism of .o* into the two-clement Boolean
algebra o7 determined by V. Since conditions (3), (1) are satisfied, the
homomorphism % preserves all infinite joins and meets (1)-(7) § 6, i.c.
the equalities (8)-(11) hold. Moreover, by (1)

(5) Bl = A.
IFor any free individual variables wx,w,, lot nd set

&y ~x, if and only if |r, = w,|eV.
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By (c1o)y (€11) § 2, (2), (3) § 6 this relation is an equivalence relation in X.
Moreover,

(6) if @y~ @,, then for any set designation 4, & |4 ()] = k|4 ().
In fact, by (c5;) §2 and (3) §6

|A (@) = A(wy)ieV  and (4 (x,) = A(z)| V.
Hence,

MA () = AQwy)l =V and A (w,) = A(x) =V,
ie.
}'IA(VDAN = hi4 (wm” .

Let us seb for any wye X'y [@] = [#,,: @, ~&,] and let I be the set of all
cosets [o,], £ =1,2,...
TFor any set designations 4, B, let us set

4 B if and only if |4 c B|eV,
4 ~ B if and only if |A=B|eV.

Observe that by (¢) §2, 4 ~ B if and only if 4 < B and B 3 A.
Moreover, ~ is the congruence relation in 2* with respect to the operations
U, N, —», —. In fact, ~ iy an equivalence relation by (T?), (T3),
(T3) § 2 and (2), (3) §6. It is easy to show that the following formula
(Fy=F,) > (—I',=~=F,) is a theorem of .*, Consequently, by (2),
(3) §6 and (1), (TF), (TF) §2, ~ is a congruence relation.
By (cs) §2,

(7) it 4 < B, then hld(z) <h|B(z)l, kt=1,2,..
Consequently,
(8) it A~ B, then hld(w)| =h|B(x), k=1,2,...

Tor every 4 in 2%, let ||4| denote the equivalence class determined
by 4, ie. |d| = [B: 4 =~ B].

Consider the product /', The elements of % are functions f asso-
ciating with overy [#;)el an clement hla] of the two-element Boolean
algebra ..

Let us set for any 4 «@*

(9) f||.-lp[ (] = hjd (x)l, k=1,2,...

This definition is correct, sinee by (6) and (8) equation (9) does not depend
on the choice of representative elements in [#,] and ||A[l. The set # of all
functions f,., 4 e@* is a subalgebra of &/,
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We shall define an interpretation 9 of &* in the set I, in the two-ele-
ment Boolean algebra ./ and in the algebra %, which is isomorphic with

a field of subsets of I. Let us set

(10) (['/Dlu‘] = [mm]) = hlwk = xm‘ ’ kr m = 1’ 21 vy
(11) (fiy Sm fum) = hl4 € B, A, Be2*,
(12) (quu =m f“];“) = hlA = BI, .A, Be9*,

It is easy to verify that these definitions are correct, i.e. do not depend
on the choice of representative elements in [w], [,], [4], [B].
Observe that

([Zx] =m [‘vm]) =V if and Only if ["Dl’c] = [.'lf,,,,],
(fiar Sm fym) =V i and only i fiy < fims
(fry =m fym) =V if and only if  fiuy = fim.

Thus, =g, is the characteristic function of the identity relation
in I, cq is the characteristic function of the relation of inclusion in &
and =g is the characteristic function of the relation of equality in 4.

With every I-valuation v we can associate a substitution sbo de-

fined as follows:
if v(x) = [z,,], and n is the least positive integer such that x, ~uw,,,
then we set sbo(z) = @,.
Let 4,, 4,,... be a sequence such that every set designation appears

exactly once in this sequence and all 4,,,n =1, 2, ..., are set designations.
Then with every #-valuation V we can associate a substitution sb ¥V

defined as follows:

if V(Fy) = fy4 and A, is the first element in the sequence, fixed above,
of set designations, such that 4, ~ 4, then we put sb V (F,) = 4,,.

For any formula o of %, let sb Vva denote the formula obtained
from a by performing the substitutions sb ¥V and sbv. It is easy to show
by inductive argument on the length of « that

(13) ag(V,v) = hisb Vval.
In the proof we make use of the following cequation
V(B) = fiarm

which holds for any Be2* and any #-valuation V, and of the fact that
the equations (8)-(11) hold in «7.
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In consequence, if « is an axiom of *, then sbVou is a theorem
and by (2) §6, hlsb Voval =V, ie. ay(V,v) = V. Thus, M is a model
of *. On the other hand, for the valuations

Vollk) = firgy k=1,2,...,
vol@) = [®], k=1,2,...,

Bap(Va, ve) = A |f] =

we have

We have proved the following theorem.

7.1. A formula f§ is a theorem of &* if and only if B is valid in the
semantic model tn an enumerable set I, and in every field & of subsets of I,
i.e. when the set variables run over # and the quantifiers binding set varia-
bles are restricied 1o &.

Thus, in the case where 7 is a olassical propositional calculus, F*
can be considered o be a formalized theory of fields of sets.

§ 8. Classical elementary theory of Boolean algebras

With the classical propositional calenlns we shall associate the fol-
lowing system .’ of the clagsical elementary theory of Boolean algebras.
The primitive signs of &’ are the parentheses and

(a) the free individual wvariables denoted by F,,7F,,...,

(b) the bound individual variables denoted by @i, ¢4y ...,

(¢) the symbol V for the unit element,

(d) the symbol A for the zero element,

(e) the symbols U, n, —», — for Boolean operations,

(f) the symbol c for the Boolean inclusion,

(g) the symbol = for the relation of equality,

(h) the propositional conneectives v, n, =, —,

(i) quantifiers (,,, Ny *=1,2,3,

From these signs we form expressions of two kinds: terms and for-
mulas.

The set 2 of all terms of &' coincides with the set 2* of all set designa-
tions of thofsystem £ of the clagsical calculus of classes, considered in § 7.

The set .#’ of all formulas is the least set such that

1) it 4,Be®, then A ¢ B and A=DB are in &',

2) if «,fe #', then aup, anp, a = f, —a are in F',

3) if «(F,) is in &' and neither |, mnor (M, appears in a, then
Ufpma(Fk/‘Pm) and mm,na(Fk/‘Pm) are in F'.
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Thus the set F' is contained in the set # * of all formulas of the yys-

tem &% of the classical calculus of classes.
The axioms of &' are all formulas obtained fron theorems of the clas-

sical propositional calculus & by the substitution for propositional varia-
bles of arbitrary formulas in &' and, Imoreover, the following forinulas,

which are axioms for Boolean algebras:

(T,) I©=7r,
(Ty) (Fy=T,) = ((F =) =>Un=F ))a

(Ty) (F,=TFy) = (IO TFy=F,0 ),

(T  (Fy=T,) > (F,0F,=F,0 ),

(T5) (Pl—FZ)=>( —F =—F,),

(T F,=» Fo=—F,0F,,

() FOUF,=N0rF, Hhob,=Fol,

(Ty) FO(F,OF)=(0F)0F,, oo Py = (' IFy) O Iy,
(T)) (FioF)0F,=F,, I oF,0F)=1F,

(Thw) FiO(FOF)=(F,0F,)0F 0F,),

(Tn) (F,o0—F)UF, =T, (FLO—-F)nF,=1F,,

(T)) V=F,0-F,, Aa=Fo-I,

(T1) ((F1 cly) = (Flnﬁ12=]ﬂl)) n((FlﬂFe =1I) = (I c 1"2))-

The set 7 of all theorems of .9’ is the least set of formulas containing
all axioms and closed with respect to the rules of inference: modus ponens,
the rule of substitution for free individual variables, the rules of elimina-
tion and of the introduction of existential and universal quantifiers.

It is easy to show that

8.1. If a is a formula tn F' and a is a theorem of ', then « s also a the-
orem of S*.

In fact, all axioms of . are axioms ov theorems of %, and all rules
of inference in . are also admitted in -* (the rule of substitution for
free individual variable in .9 corresponds to the rule of substitation for
free set variables in %, the rales for quantifiers in . correspond to the
suitable rules for quantifiers binding set variables in &%),

We shall show that also the converse theorem holds.

8.2. If wis a formula of &' and « is « theorem of S*, then « s also
a theorem of ..

If follows from the (tidel theorem that if « is not any theoren of ¥,
then there exists a model of . in which « is not valid,
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More exactly, there exists a Boolean algebra %' for which the fol-
lowing conditions are satisfied.

Let cy. be the characteristic function of the relation of inclusion
in %', i.e. for any a,b in %’

_Jv it e <),
(1) (@ Cyp b) = {/\ if nona <b.
Let =y be the characteristic funection of the equality relation in
%', ie. for any a,b in &’

_ VvV it a=1Dd
(2) (a=9,,,b)={/\ ;f ;;éb.’

Ivery valuation V in #’, i.e. every function V on the set 7 of all
free individual variables with values in %', can be extended onto the set
2 of all terms of &' (see § 5 (1), (2), (3)).

With every formula g in &' we shall associate a funetional gy, on
#'" with values in the two-element Boolean algebra defined by induction
as follows:

(4 c By (V)= V(4) e V(B) for any 4, Bin 2,
Yo (V) = V(4d) =g V(B) for any 4, B in 2,

(
- (
(3) (y90)g (V) = pgu(V)uby (V), for any y,d in &,
(¥ 0)an (V) = ya(V)Ubg.(V)  for any yp, é in &,
(v = O (V) = yaw (V) = g (V) for any y,d in &,
(=) (V) = —(ya (V) for any y in &,
(Up (@) (V) = Ues yor(a) (V) for any y in #,
(M 7 (@) (V) = Mesr yar (a) (V) for any y in &',

The fact that M’ is a model in &’ for &' means that for every valuation
V in &’ and for every axiom f of &', fyu(V) = V, i.e. § is valid in M.
Ou the other hand, since a is not valid in 9N’, there exists a valuation V'
such that

(1) age (V') = A.
By the Stone representation theorem for Boolean algebras, there

exists an isomorphism & of #’ onto a subalgebra & of a product & of
two-element Boolean algebras .
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Let us set
if i=j o
(6) (i =wJ) =l i for any ¢,7 in [
it h{a) <h(d), e if a <0,
(© (h(a o D l if non h(a) < h(b), ie. if non a < b

for any elements h(a), h(b) of #;
l it  h(a) = h(b), ie. if a =D,

it h(a) # (D), ie. if a #£D,
for any elements L(a), h(b) of 4.

(1) (h(a) =y R(D

Observe that O is a semantic model of &7* in [ and #. Consider the fol-
lowing #-valuation V

(8) V(F) =h(V(F), k=1,2,..
It is easy to see that for any 42 we have
(9) Vd) = h(V'(A)).

By inductive argument it can be proved by making use of (1)-(3), (5)-(9)
that for any formula f in #' < F*

(10) Baw (V') = By (V).

In particular, ag(V) = agp (V') = A.
Thus, there exists a model of &* in which « is not valid. Hence, by
7.1, a is not any theorem of &*, which proves 8.2.

§ 9. Elementary theories of .7-algebras based on ¥ -logic

With the system & of a propositional calculus with negation (°),
satisfying the conditions mentioned in § 5, we shall associate the follow-
ing system &’ of the elementary theory of -algebras based on ¥ -logic.

The primitive signs of %’ are the parentheses and

(a) the free individual variables denoted by I, I,

(b) the bound individual variables denoted by ¢, ¢, ...

(c) the symbol V for the unit element,

(d) the symbol A for the zero element,

(e) the symbols U, O, =», 0,,..., 0,0, ..., 0" for operations in
& -algebras,

(°) This hypothesis is not essential.



§ 9. Elementary thoeories of &-algebras 27

f) the symbol c for the lattice inclusion in &-algebras,
g) the symbol = for the relation of equality,

h) the propositional connectives v, n, =, 0;,...,0,,0},..., 0%,
i) quantifiers U, , My, ¥ =1,2,...

From these signs we form in the familiar way expressions of two
kinds: terms and formulas, The set 2 of all terms in &%’ coincides with
the set 2* of all set-designations in &* (see §2). The set &' of all
formulas in .’ is contained in the set #* of all formulas of &*,

The axioms for &' are all formulas obtained from theorems of the
propositional calculus . by the substitution for propositional variables
of arbitrary formulas in %' and, moreover, the following formulas: the
axioms for equality, the axioms for &-algebras, which by 3.2 are in the
form of equations, and the axioms

(
(
(
(

VoP, =TI, AOF =A\,
(FoeclP)=(F,—>PFP,= V), (F,cl)=MnNF,=F,).
— VYV =A,

By (T})-(T};) § 2, 2.2 and by the proof of 3.2, all axioms of &’ are the-
orems or axioms of .*. Moreover, all rules of inference admitted in &’
are also in &*. In fact, modus ponens is admitted in &’ and in %*. The
rule of substitution for free individual variables in %’ corresponds to
the rule of substitution for free set variables in #* and the rules for quan-
tifiers in %’ correspond to the rules for quantifiers binding set variables
in %*, Consequently the following theorem holds.

9.1. If a is a formula in F' and a is a theorem in ', then it is also
a theorem in F*.

The aim of this section is to show that also the converse theorem
is true for formulas of the form A =B, 4,BeZ.

Let us consider the set 2 of all terms of %’ as an abstract algebra
<-95 vV,0, Oy =%, 04, ..., 0, O, "')Oa>-

It is easy to see that

9.2. The velation ~ defined for any A, B in 2 by the equivalence

A~B if and only if (Ad=B) is in T,

i8 @ oongruence relation in 2.

In fact, it is a congruence relation, since the axioms for equality
oceur among axioms for %’ and the rule of substitution for free indi-
vidual variables and modus ponens are admitted in &.
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0.3. The guotient algebra (D[~;[V], 0, O,=»,0,,...,0,,0', ..., 0"
is an S-algebra with the unit element [V] and the zero element [A]. For any

elements [A], [B] of this algebra

[4] = [B] if and only if [A]—> [B]l=[V] and

[A] = [B] if and only if [4)O[B]=[4],
i.e. < 1s the lattice inclusion in this alyebra. The elements [ 1], k = 1,2, ...,
are free generators.

This follows from the axioms of .7,
Let » be a valuation of free individual variables If,, k =1,2,..,,

in an Y-algebra 4. In the familiar way v can be extended on the set of
all terms.

9.4. Por any terms A, B in @ if the formula A = B 1is a theorem of
&', then v(A) = v(B) for every valuation v in every & -algebra 2.

This follows directly from 9.1 and 5.7,

9.5. The algebra (D[~, [V], O, O, =», 0;,...,0, 0', ..., 0" s
a free S-alyebra with generators [I'y], k =1,2, ...

The proof, similar to that of 5.8 based on 9.4, is omitted.

It follows from 9.5 and 5.8 that the algebras of set designations
of &* considered in 5.8 and the algebra of terms considered in 9.5 are
isomorphic. This isomorphism is given by the formula

h([4]*) =[A] for any A2,

where [AT* denotes the elements of 2%/~ and [4] the clement of 2/~
In consequence

9.6. For any terms A, B in 2, the formula A = B is a theorem of 9
if and only if it is a theorem of S*,

This condition is necessary by 9.1. If 4 = B is a theorem of ¥,
then [A]* = [B]*. Hence A([AT*) = A([B]*), ie. [4] = [B]. Thus
A =B is a theorem of ¥’
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