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0. Introduction

In the recent years increasing interest in the relative ergodic theory can be
observed.

The Thouvenot relative isomorphism theory is an important part of it
(cf. [12]). For applications of Thouvenot’s theory and related results see [1],
[8], [9] and [12].

The theory of measure preserving transformations with relative discrete
spectrum is another well-known part of the relative ergodic theory (cf. [2]
and [13]). The characterization of these transformations in terms of relative
sequence entropy is given in [4].

Using the relative Rohlin-Sinai theory of invariant partitions for mea-
sure preserving automorphisms the author of this note has obtained certain
results concerning such partitions for Z%-actions, d > 2 (cf. [5]). The investi-
gation of perfect partitions for Z2-actions with finite entropy has led to the
question of the existence of relative generators for single automorphisms. It is
proved in [6] that this question has a positive answer. In order to describe
the construction of perfect partitions for Zd-actions, we need in fact a
theorem on the existence of relative generators also for Z%-actions, d = 2. To
avoid technical difficulties we prove this theorem for actions of abelian
countable groups. The proof of our main result runs in the same way as in
the absolute case and its idea is the same as that of Rohlin [11].

1. Auxiliary results

Let G be a countable abelian group and let % (G) be a family of all
nonempty finite subsets of G. For 4 € #(G), we denote by |A| the cardinality

of A.
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A set A < G is said to be tiling (cf. [10]) if 4 € #(G) and there exists a
set C — G such that the sets {A-g; geC} form a partition of G.

LeEmMMA 1 ([10]). For every 6 >0 and every K € % (G) there exists a
tiling set A with
liged; K-g = 4}| > (1-3)|Al.
A sequence (4,) = .#(G) is said to be a Fglner sequence if for every g eG
lim 19 An D Adl _
n—®o lAnI
It follows from [3] that in every countable abelian group there exists a

Fglner sequence (A,) such that 4, < A4,,,, n=>1and |J 4,=0G.

n=1

1.

Remark. In every countable abelian group there exists a Fglner sequence
(A,) such that A4, is a tiling set n>1 and lim |4,| = o0.

n—a

Proof. Let (K,) = #(G) be such that K, < K,,;,n=21and (J K,=0G.

n=1
It follows from Lemma 1 that for every n > 1 there exists a tiling set 4, such
that
1
A,nh 14, =llgeA,; K,-g <A, >[1-—— |I4,.
0 4, A =1lgeds; Kyog < A, ( m)l |
Let geG be arbitrary and n, be such that geK, for n>n,.
Hence

1
A AL | ) Ay nht 4] > (1___)|A,,|, "3,
heK,, n+1

ie. (4,) is a Fglner sequence.
It is clear that for every n > 1 there exists g€ A4, with K,-g < A4,, i.e.
IK,| <|A4,|]. Therefore, lim |4,| = oo.
n—a
Now, let (X, #, u) be a Lebesgue probability space, .# be the set .of all
.measurable partitions of X and let & be the subset of .# consisting of
partitions with finite entropy. We consider in & the metric d given by the

formula

d(P,Q)=H(P|IQ+H(Q|P), P,QeZ.

We denote by ¢ the measurable partition of X .into single points.

Lemma 2 ([11]). For every P, Q € # such that P> Q and H(P|Q) < o©
there exists ReZ with P=Q v R and H(R) < H(P|Q)+3 . /H(P|Q).
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If P=(P,i>1)e.#, Be# then P B denotes the partition
PnB=|{P,nB, X\B, i>1}.
Let T: G xX — X be a measure preserving action of G on X and let
L()=T(@, "), g<GC.

The action T is said to be free if T, x # x for u a.e. x€X, and for any g
different from the unit of G.

LEmMmA 3 ([100)). If T is a free action then for every 6 >0 and every
tiling set A — G there exists a set F €% such that

(i) the sets {T,; F,ge€A} are pairwise disjoint,
(i) u(U T,F)>1-4.
geAd

Now, let Pe.# and A = G. We put P(4)=\/ T,P and P; = P(G).
geA

A partition P e.# is said to be a o-relative generator of T if P; v ¢ = .

Let o € # be G-invariant, ie. T,0 = 0, g €G. It is possible to show, in a
similar way to that used in [7] that for every PeZ and every Fglner
sequence (A4,) the limit

lim 1
n—®© IAnI

H(P(A4,lo)

exists and does not depend on the choice of'(4,).

We denote this limit by h(P, T|o).

The entropy h(T|o) of the action T relative to ¢ is defined by the
formula

h(T|o6) = sup {h(P, Tl|o); PeZ}.
LEMMA 4. For every P,Q€Z such that P<Qrv o we have
h(P, T|o) < h(Q, T)o).
Proof. Let (A,) be an arbitrary Fglner sequence in G such that
A,cA,y,n21 and O A,=G. Since Q(4,) v o »Qr Vg, it suffices to
prove our inequality 'fo"r=5’ez’ such that P < Q(A,) v o where m>1 is a

positive integer. For any such P we have

P(A)< V T,0(4) vo=0Q(4, A Ve

ged,

and so
H (P(A,,)’Ia) <H (Q-(A,,-A,,,)Ia), nzl1.

Since (A,-A.; n = 1) is a Fglner sequence we obtain the desired inequality.
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CoroLLARY (Relative Kolmogorov-Sinai Theorem). If Pe% is a o-
relative generator of T then h(T|o) = h(P, T|o).

Proof. Let Q €7 be arbitrary. By our assumption Q < Py v ¢ and so
Lemma 4 implies

h(Q, T|lo) < h(P, T|o), QeZ.

The result is an easy consequence of this inequality.

2. Main result

APPROXIMATION LEMMA. If T is a free action with h(T|o) < co then for
every P, Qe and & > 0 there exists ReZ such that

P<Rr, H(R|Qr v o)<h(T|o)-h(Q, T|o)+4.

Proof. 1t follows from the previous Remark that there exists a Fglner
sequence (A4,) such that every 4,, n > 1 is a tiling set and lim |4,| = c0. We

may suppose that the unit of G belongs to 4,, n > 1. Indeed, let (4,) = % (G) be an
arbitrary sequence satisfying the two above properties. For every n > 1 there
exists g, €G such that the unit of G belongs to g, A4,. It is easy to check that
the sequence (A,) defined by A, =g, A,, n>1 has properties as desired.

Let P, Q€# and 6 > 0 be arbitrary. We put «a = P v Q. There exists a
positive integer n > 1 with

1) | jnIH(a(An)la)—h(a, Tio) <7,
@ L H0)lo)—ho. T 0
S H(QAo)=h(@. TIo) > =5,

. 1 o

3 if 0 <t <|A..| then —tlogt—(1—1t)log(l1—1) <Z'

We choose A > 0 so that

4) if Be# and u(B) <A then H(P N B) <§.

Let B, = A, ', n > 1. It is clear that B, is a tiling set, n > 1. Lemma 3 implies that
there exists a set F €.4 such that the sets |T, F, g €B,] are pairwise disjoint
and u(D) <A where D= X\ () TF.Let = T, F, D; geB,} and (5,) be a

geB,
sequence of finite measurable partitions such that ¢, ~ ¢. Since a > Q, one
can check, using the definition and simple properties of conditional entropy,
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that
6) Y H@(A4)NTFIQ(A) nTF V Op)

geB),

=Y H(«(4)NT,Flo,)— Y H(Q(A) NT,Flon)

geB, geB,
= H(x(A,) v Blo,)—H(x(A,) nD|o,)
—H(Q(A,) v Blow)+H(Q(A,) " Dls,), m>1.

Taking in (5) the limit as m — oo we see that (5) remains valid for ¢ in place
of o,,. Therefore, there exists g, €B, with

(6) H(x(A) T, FIQ(4,) " T, F v o)

1

B I(H(oz(A,,) v Ble)—H (x(A,) N D|o))
—H(Q(A4,) v Blo)+H(Q(4,) N D|o))

5o(H (4 v Blo)=H(Q(4) v Blo)

1
< g (H (=(4)lo)=H(Q(4))]0))

<

<

Applying (1), (2) and the equality |B,| = |A4,] we get
(7 H(@(A)n T,,FIQ(A) N T,  F v o)

< h(a, T|o)—h(Q, Tla)+g < h(T|o)—h(Q, T|a)+g

Now we consider the partition y = |T, F, X\ T,, F}. It is easy to verify
that

Q(A) NT  F < Q(AD) v .

The obvious inequality u(F) < IAL,,I together with (3) imply that H(y) <:S_1'
Therefgre using (7) we obtain
® H(P(A)NT, F|Qr v o)
SH(P(A)NT, FvylQrv o)< H(@(A4) N T,  F v 7|1Q(4,) v o)
=H(y|Q(A4) v o)+ H(x(4) " T, F|Q(4) v y v 0)

SH@Y)+H(@(4) T, ,FIQ(4) T, P v o)

< h(T|o)—h(Q, T|a)+%6.
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Let us observe that the partition
R=PA)NT, FvPNT,D
satisfies all requirements. Indeed, it follows from (4) and (8) that
H(R|Q, v o)< H(P(A,) T, F|Q, v o)+H(PNT,D) <.
Since B, contains the unit of G we have

PSPVT,B=PnT,Dv \/ PnT(T, F)
geB,,

=PnT,,Dv \/ T(T_,PNTF)

geB"

<\ TL(PNT,,D)v ¥ T,(P(4) T, ,F)= \/ T,R<Ry,
g¢B, gebp geB,

and this completes the proof.
Let now o0, t€.# be G-invariant and ¢ < 1.

THeOREM. If the factor action T, of G on (X/t, B/t, W) is free with
h(T;|6) < oo then there exists a a-relative generator P € % of T,. Moreover, the
set of all these generators is dense in {QeZ; Q <7, h(Q, T|o) = h(T;|0)}.

Proof. We may suppose t = ¢. Let 6 > 0 be arbitrary and Q € Z be such
that

62
) h(Tlo)—h(Q, Tlo) <.
There exists a sequence (Q,) < 2 with Q, =0, Q, 1 ¢ and
52
(10) h(T|o)—h(Qs, Tlo) = STFT> k=0.

It follows from (10) and the Approximation Lemma that there exists a
sequence (R;) €2 such that (R))r = (Q))r and

H«Qk—l)T v Ry v a|(Qx-1)r v 0)
2
= H(R|(Qx-1)r v 0) <52‘(i-n, k>1.

Therefore, using Lemma 2, we get a sequence (P,) = & with

(1) Q-DrvRivo=(Q-1)rvPve

and H(P) <%, k>1.

Since (Ry)r = (Qy)r we obtain from (10)

Qi-)rv(PIrvoeZ(Q-1)rv@Irve=QJ)rve, k=1,
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and so
(12) @v VP)yvez@)ve, nx=l
k=1
We put P=Q v \/ P,. The fact that Q,1¢ and (12) imply Py v ¢ =e.
k=1

Using the inequality from (11), we get H(P) < H(Q)+6 < oo and
(13) d(P,Q)< ) H(Py) <9.
k=1

Thus the first part of the theorem is proved.

The Relative Kolmogorov-Sinai Theorem ensures that the set of o-relative
generators of T with finite entropy is contained in the set {Q €% ; h(T|o)
= h(Q, T|o)}. Let 6 >0 and Q€% with h(T|o) = h(Q, T|o) be arbitrary.
Starting in (9) with such a Q we get, by the above procedure, a o-relative
generator PeZ of T satisfying (13), which completes the proof.

It is possible to prove the existence of a finite relative generator for
ergodic actions with finite entropy.
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