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EQUATIONS
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1. Introduction. In a recent paper Staffans [4] studies a nonlinear
Volterra integro-differential equation

t
(1 X()+ [g(x(e)du(t—s)=f(), =0,
(1)
in the real scalar case. His main result is the inequality
G(x(1)) t
dy J'
2 —— < s)| ds,
@ j iy < o
G(x(0)) 0

where x is any solution of (1), G is an integral of g, and u is the function
defined by

u(y) =sup{lg2)l: G(2) <y}.

From (2) he is able to obtain bounds for the solutions of (1) provided that
some additional conditions on g are assumed.

To prove (2) Staffans, among others, assumes that the function G
satisfies
(3) inf G(x) > — o0,

xeR

which, however, adds a restriction on the function g. Inequality (3) is not
satisfied, if, e.g., we get g(x) = —3x?, xe R. Furthermore, the function u by its
definition might not get finite values so that inequality (2) does not give any
information about the solutions of equation (1).

It is the purpose of this note to improve the Staffans results, namely, to
examine the above-mentioned cases, and we will see how one can get a
nontrivial inequality like (2), even for the n-dimensional nonautonomous
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equation
4) X(0)+ [du(t—s)g(s, x(s)) =1 (t, x(1)), =0,
0

where a condition similar to (3) is not used. The key idea is to move along
solutions, and so for any finite interval of time an inequality, like (3), is
satisfied. The other interesting point where u may take no finite values is
faced by multiplying |g(z)| in the definition of u by a factor b(z) which, of
course, will appear in the final inequality. In this way we can obtain “a
priori” bounds for the solutions of (1). Such bounds in the n-dimensional
case for Volterra integral equations were also obtained by Levin [2].

2. Main results. A basic assumption in [4] for (1) is the positiveness of
the measure u as was defined in Halanay’s fundamental work [1]. Extending
this notion to matrix-valued kernels we give the following definition:

Definition. Let u be defined on R* with values in the set of (n x n)-
matrices with real elements. We say that u is positive definite if for each
@eC(R*, R") and r > 0 it satisfies

(5) (o), [dut—s)o(s))dt >0,
0 0

where (-, -> denotes the usual inner product in R".

Following the lines of Staffans in [3] (p. 207) one could give an
equivalent definition for positiveness of u by using its distribution Fourier
transform, but it is not our purpose here to discuss this notion further.

Our main theorem is the following

THEOREM. Consider equation (4) where u is positive definite as in the
Definition. Assume also that the functions g and f satisfy the conditions:

(8) g: R*xR"— R" is continuous and such that, for each fixed te R",
g(r, ) is the gradient of a function G(t,-): R"— R for which assume that
G(-.") is continuous and, for each (t, x), (¢G/dt)(t, x) is nonpositive.

(f) f maps R*xR" to R" and there are functions b: R*xR"— (0, c0) and
me L3,.(R*) such that

(6) 1S (¢, x) S m(@®)b(t, x)
Jor all (t, x)e R*x R".
Let w, be the function defined by
u,(y) =sup (h(t, x)g(r, x)|: G(t, x) < y|

for all those y's for which this takes real values.
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Then any solution x(t), te[0, T), of (4) satisfies the inequality
G(t,x(1)) t
lad dy
) J < |m(s)ds

uy(y)
G(0,x(0) 0

Jor all te[O0, T).
Proof. Fix a point re(0, T). Since G is continuous, we have

y =inf {G(t, x(?)): te[0, r]} > —c0.

Replacing G, if necessary, by 1—y+G, we can assume that y =1 since, if G
satisfies (g), then so does G+c for any constant ce R. Define the function

v, (¥) = sup {b(t, x(1)|g (¢, x(®))|: te[0, 7] and G(t, x(1) < y}

for y > 1.
Now, multiple (4) by g(r, x(t)) from the left and integrate over [0, ]
(0 <t <r); we then obtain

8) ]'(g(t, x(1)), )E(t))dt+]'<g(t, x(1)), gg(s, x(s))du(t—s))dt
0 . 0

- g Gt xO), £, x(0)dr.
Because of (g) we have
G(r, x(1) = G(0, x(0)) < :§<g(r, x(0), %()dr,
and so from (5) and (8) we obtain

G(z, x(1)) < G(0, x(O))+§(g(t, x (1), f (¢, x(2))>dr

for all te[0, r]. Taking into account (6) and the definition of v, we finally
get

t
9 G(r, x(1) < G(0, x(0))+ fv, (G (s, x(s))m(s)ds, te[O, r].
0
Assuming for a moment that v, is continuous on [1, ) we extend it

continuously on [0, x) in such a way that v,(0)=>0 and v, be
nondecreasing. Then Bihari’s inequality applies to (9) and gives

G(1,x(1)) dy t
(10) | < [m(s)ds, te€[O0,r].
coxon(y) o

Assume that v, is discontinuous and fix a re[0, r]. Let v, be a sequence
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of continuous nondecreasing functions on [0, o) satisfying v, — v, pointwise
and such that

5(y) <v.(y), yell, Z%Q]G(s, x(s))],

where now v,(y) is defined on [0, 1] as before.
Since for each index n the function v, satisfies (9) as well, extending it
linearly on [0, 1] as v, above we obtain again
G (1, x(1) t
dy j
11 < Im(s)ds, n=1,2,...
1 j va(y)

G(0,x(0)) 0

The Lebesgue Dominated Theorem applies to (11) and gives (10), since 7 is
arbitrary.

Finally, fix a te[0, r]. If G(0, x(0)) = G(t, x()), then clearly (7) holds. If
G(0, x(0)) < G(tr, x(1)), from (10) and due to the fact that v,(y) < u,(y) we
obtain (7) since r is arbitrary. '

Example a. Consider the n-dimensional equation

t

(12) x(t)+2 Jdu(t—s)ﬁ = sin|x(t)],

0

where p is n-dimensional positive definite.
Choose G(t, x) = |x|*/(1+t) and b(t, x) = |x|+ ./1+t. Then we obtain

u(y) =2(y+y), y=0,

and so (7) gives
Ix (D) < 1+t (= 14(1+Ix(0)l)exp {2(/1+1-1)})

for any solution x of (12) and any ¢ in the interval of definition of x.

Example b. Let u be positive definite and consider the real scalar

integro-differential equation
t

x()+4 J'x3(s)e"du(t—s) =
0

In this case, set G(t, x) =x*e™* and b(t, x) = ¢/*. Then (7) applies with
u,(y) = 413/4, y =0, and gives

t
1+|x(0)

Ix()] < e‘"(Ix(O)I+-1-6—%e"/4—%te"/‘)

for all ¢t in the interval of definition of the solution x.
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