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Introduction. The notion of valuated vector space was introduced
by Fuchs [2], and generalized to the notion of valuated group by Richman
and Walker [4]. In the latter paper, the projective and injective valuated
groups are characterized. In this note, we characterize the quasi-projective
and quasi-injective finite valuated groups.

We begin with the necessary definitions. A valuated group G is an
abelian group with a valuation v,: @ — ordinalsu {oo} for each prime p
satisfying:

(1) vp(z+y) > min{o, (=), v,(y)},

(2) v, (pz) > v,(2),

(3) vp(ow) = v,() if (¢, p) = 1.

The valuated group & is called p-local if v,(g) = oo for all g €@,
g # p. In this case we write v,(g9) = v(g). Note that a valuated p-group
is p-local.

In what follows, we work in &, the category of finite valuated groups.
It is clearly sufficient to work in &,, the category of all finite valuated
p-groups. The maps in this category are the valuated homomorphisms,
i.e. the abelian group homomorphisms f such that v(z) < o( f(w)). Unless

n
otherwise specified, @ @; denotes a direct sum in #,, the ordinary abelian
direct sum with ! '

2(9:D9:® ... Dg,) = min{o(g;)}.

If G e #,, and H is a subgroup of @, then H inherits the valuation
from G, and G/H is assigned (see [4]) the valuation

v(g+H) =max{v(g+h) | heH}.

Abelian group notation follows Fuchs [1]. Valuated group notation
follows Richman and Walker [4]. In particular, if G € #,,

supp@G@ = {a | a = v(g) for some g € G}
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and
={ge@|v(g)>y} for any ordinal y.

Finally, we employ the usual definitions for quasi-projective and
quasi-injective. A group G € #, is quasi-projective if for any subgroup
H < @ and any map f: @ —G/H there is a map f: @ — @ which lifts f.
Dually, @ is quasi-injective if for any subgroup H and any map f: H - @
there is a map f: G — @ which lifts f.

1. Quasi-projectives in . ‘We show first that every quasi-projective
in #, is a direct sum of cyclics.

THEOREM 1.1. If @ is quasi-projective in F,, then @ is a direct sum of
cyolics.

Proof. (By induction on the minimal % such that p*@¢ = 0.) If k =1,
then the result is immediate. by [2],' Theorem 1, or [3], Theorem 4.

Assume that k> 1 and consider @ = = @/@[p]npQ. Since G[p]an
is fully mvarlant in @, @ is Quam-prOJectlve, hence, by mductlon, is a
direct sum of cyclics. Write

G = (—B(E,) , Wwhere % = a:,,—]—G[?]niPG,

Now choose a minimal y so that (G[p])” # G [p]. Then, for somie i = io;

socle (z > ¢ (G[p])

(this is true since {z;} generates @). Let m, be the projection of @ onto
{Z; ), and f the quasi-projéctively induced lifting of @ >G = $Z -
Then f(@) = {#;>+@[p]. However, by Lemma 3 of [2], we may write

G[p] = socle(z,,> DAB@E[P),
where A is homogeneous of value ' < y. Thus

(2> +E[P] = (5, DADE[PIY,

& direct sum in #,. So we may follow f by projection onto {(z; > to obtain
a valuated map f’ G — (&, >. It is easy to see that f’((w,o)) = {@;,> 80
that f' will yield a splitting G = {w;,) DKerf’. But now Kerf’, as a sum-
mand of @, is quasi-projective and the argument ma.y be repeated to
obtain G as a direct sum of cyclics.

THEEOREM 1.2. Let

n
G = @<w) in F, with orders, = p*i.
fm=1

Then @ is quasi-projective if and only if;. for all m = 0,
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(QP1) if orderw, < orderp™wz;, then v(w;) > v(p™m));

(QP2) if v(x;) < v(p™x)), then v(p's;) < v(p**™x)) forallt, 1 <t< ¥ —1.

Proof. Necessity. Suppose that G is quasi-projective. Let ordera;
< orderp™z; and assume that o(x) < v(p™w;). Then there is a valuated
map

f: @ . %
BTN <P™ )
given by

o+ <pay S pmay+ (P,

As a summand of G, {w,-)@(qv,) is quasi-projective. Hence

(@) @ (&) 160 @) <@
{pzp <™y pay — <p™Hay)

can be lifted. Since orderz; < orderp™z;, this is clearly impossible. This
proves (QP1).

To prove (QP2) assume that o(z,) < v(p™%;) again. Arguing as above,
the map f must lift to a valuated map f: <(;> — <{@;>. It is easy to check
that f(«;) = op™=;, where (¢, p) = 1. Thus, v(p'x;) < v(p**™;) for all ¢,
1<i<k -1

Sufficiency. Suppose that G satisfies (QP1l) and (QP2). Let f:
G— @/K be valuated. For each ¢ write f(x;) = u,+ K, where u; € @ with
v(%;) = v(u;+ K). Since @ = @<=;> in F,, it is enough to show that
orderu; < orderw; and v(p'w) < v(p'w;), 1<r<k;—1. Indeed, ®; >
induces then a valuated endomorphism of G, which clearly lifts f. S8ay

n

j=1

Z) @<wy) —~

Now v(x;) < v(u;+ K) = v(u) < v(ayx;) for all j. By (QP2), v(p'2;)
< v(pTayx;) for all j, and hence v(p'®;) < v(p"u;), 1 < r < k;—1. If orderu;
> order;, then orderayx; > orderw; for some j. Thus, by (QP1), v(,)
> v(ay@;) > v(u;) — a contradiction.

2. Quasi-injectives in #,. In the quasi-injective case we are able
to prove a stronger version of Theorem 1.1.
We begin with a useful lemma.

Levua 2.1. Let G be a valuated group, and D <x,)DC a valuated direot

sum contained in G such that v(x;) < v(o) for all x; and ¢ € C. Suppose that
for each i there is a, € G with pa; = x;. Then APC is a valuated direct
sum in @, where A = D{a;> as an abelian group.

1 .
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Proof. It is easy to check that ®<a,>)®C is an abelian group

direct sum. Since v(a;) < v(c) for all a; and ¢ € 0, it follows that pro-
jection onto A is a wvaluated map.

THEOREM 2.1. Let G be a countable bounded quasi-injeétive valuated
group whose support is order isomorphic to a subset of the set Z* of positive
integers. Then G is a direct sum of cyclics as a valuated group.

Proof. (By induction on k, where p*G = 0.) If k = 1, then the result
follows from Theorem 1 in [2].

For k > 1, consider G’ = G[p]+pG. As a fully invariant subgroup
of @G, @' is quasi-injective. Hence, by induction,

F = OWH>D<),
t 2

where the y;’s and ,;’s are chosen so that AS(y;) =0 and h%(z;) > 1 for
all 4, j. Let

Y = (‘P(?h‘)

and let ny be the natural projection of G' onto Y. By quasi-injectivity
of G, ny lifts to a valuated endomorphism f: G — @. Note that Imf
c Y+G[p] € @'. Therefore, we may follow f by n, to get a splitting
G = Y ®@,, where G, = Kerayf. Since pY =0, Y is a direct sum of
cyclies (by [2], Theorem 1).

As a summand of G, @, is also quasi-injective. Furthermore,

»G, = @(%‘)
J
a8 a valuated group. Write {v(z;)} as {y, < y.<ys<...} and let
X, =j('? {x;>, where J, = {Jj| v(2) = Y1}
&y

For all j € J,, choose a; € G, such that pa; = x;, and let 4, = ®<{a;>
jed;
(as an abelian group). Now let =, be the projection of pG, onto X,l. By

quasi-injectivity, =, lifts to f,: G, - G,. Note that
Imf, = 4,4 G,[p] € A,+ ®<z;>.
g
By Lemma 2.1, A,®®<x;) is a valuated direct sum. Hence we may
et
follow f by projection onto lAl to obtain a splitting

G, = 4,®G;, where ®<{z;)>< G,.

it
Continuing as above, we obtain a valuated direct sum.
G, = ®4; with pAi=.§<wj> and J; = {j | o(®) = 7}
jedy

t=1
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Each A, is quasi-injective and the technique above can be used to
obtain A, as a direct sum of cyclics (possibly countable). Thus & is a valu-
ated direct sum of cyclics.

COROLLARY 2.1. Any quasi-injective in F, i8 a direct sum of cyclics.

THEOREM 2.2. Let n

G = B

=1
be a direct sum of cyclics in F,, with orderz; = p*, 1 <i < n. Then G
18 quasi-injective if and only if

(QI1) k; < k; implies v(p*i~'z;) < v(phim));

(QI2) if v(p's;) < v(p*i~'z;) for some t > 0, then v(p'~*x;) < v(p*i~'"*x))
for all 5, 0 <s<1.

Proof. Necessity. Assume that G is quasi-injective. If k; < k;,
but o(p*~'xz;) > v(p*iz;), then f: (p*;> — @, given by f(p=;) = p“ 'a;,
is a valuated map which does not lift to an endomorphism of @ (since it
would decrease height). This proves (QI1).

Now suppose that v(p‘s;) < v(p*~'x;). Then f(p's;) = p¥~'z; defines a
valuated map f: (p's;> — @, which must lift to a map <(z;) - <, in
which ; — ep*i~'"'»; with (¢, p) = 1. This implies (QI2).

Sufficiency. Assume that G satisfies (QI1) and (QI2).

Let H be a subgroup of @& and let f: H — G be a valuated map. We will
show that f can be lifted by induction on %, the number of non-zero pro-
jections =, (H), where =; is the projection of G onto (x,)>,1<i1<n. If
k =1, f can be lifted directly by (QI2).

For k> 1, we consider two cases.

Case I. Suppose that Hn {x;> # (0) for some ¢. Then, using (QI2),
it is easy to lift

Flany®0: Hn(‘”ﬁ@[j?(“’j)] -G

to a map f;: G — @. Note that f,(1 —=;) = 0. Then f—f; induces a map
f':H — @, where H = (1 —n,)H, by

f(L—=m)(h) =(f—Ff)(h).

This map is well defined since if (1 —=;)(k,) = (1 —=;)h,, then
h,—h, e Hn{x;>, 80 (f—f;)(hy —hy) = 0. By induction, since H' has
at least one non-zero projection less than H, f' can be lifted to a map
f:G — @G which can be chosen with f(x;) =0. It is easy to check that
f(L—=;)+f; is the desired lifting of f.

Case II. Suppose that Hn {x,> = (0) for all <. In this case, choose ¢
so that v((w;H)[p]) is maximal. As before, it is easy to check that
(X —=;)(h) = f(h) defines a map from (1 —=n,)H to @. To prove that f’
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is a valuated map it is enough te show that we cannot have v(c,2;) < v(c;a;)
for all j # ¢ for some element (¢,x,-+ Zo,w,) € H. (Recall that G has the

direct sum va.luatlon) Now, if the above were true for some element
of H, choose p* such that 0 = p*em, e (&> [p]. But

(%) v(e;p*x;) > v(ep*s) for all j #1,

for otherwise, by (QI2), v(¢;w;) < v(og;) for some j. Thus (») contradicts
the maximality of v((=H)[p]) and f’ is valuated. By the induction hypo-
thesis, lift f' to f: @ -G and let f = f'(1—m;). Then f is the desired
lifting of f.
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