FASC. 1

QUASI-PROJECTIVE AND QUASI-INJECTIVE FINITE VALUATED GROUPS

BY

C. VINSONHALER AND W. WICKLESS (STORRS, CONNECTICUT)

Introduction. The notion of valuated vector space was introduced by Fuchs [2], and generalized to the notion of valuated group by Richman and Walker [4]. In the latter paper, the projective and injective valuated groups are characterized. In this note, we characterize the quasi-projective and quasi-injective finite valuated groups.

We begin with the necessary definitions. A valuated group G is an abelian group with a valuation $v_p: G \to \text{ordinals} \cup \{\infty\}$ for each prime p satisfying:

- (1) $v_p(x+y) \geqslant \min\{v_p(x), v_p(y)\},\$
- $(2) v_p(px) > v_p(x),$
- (3) $v_p(cx) = v_p(x)$ if (c, p) = 1.

The valuated group G is called p-local if $v_q(g) = \infty$ for all $g \in G$, $q \neq p$. In this case we write $v_p(g) = v(g)$. Note that a valuated p-group is p-local.

In what follows, we work in \mathscr{F} , the category of finite valuated groups. It is clearly sufficient to work in \mathscr{F}_p , the category of all finite valuated p-groups. The maps in this category are the valuated homomorphisms, i.e. the abelian group homomorphisms f such that $v(x) \leq v(f(x))$. Unless otherwise specified, $\bigoplus_{i=1}^{n} G_i$ denotes a direct sum in \mathscr{F}_p , the ordinary abelian direct sum with

$$v(g_1 \oplus g_2 \oplus \ldots \oplus g_n) = \min \{v(g_i)\}.$$

If $G \in \mathcal{F}_p$, and H is a subgroup of G, then H inherits the valuation from G, and G/H is assigned (see [4]) the valuation

$$v(g+H) = \max\{v(g+h) \mid h \in H\}.$$

Abelian group notation follows Fuchs [1]. Valuated group notation follows Richman and Walker [4]. In particular, if $G \in \mathcal{F}_{n}$,

$$supp G = \{a \mid a = v(g) \text{ for some } g \in G\}$$

and

$$G^{\gamma} = \{g \in G \mid v(g) \geqslant \gamma\}$$
 for any ordinal γ .

Finally, we employ the usual definitions for quasi-projective and quasi-injective. A group $G \in \mathscr{F}_p$ is quasi-projective if for any subgroup $H \subset G$ and any map $f: G \to G/H$ there is a map $\bar{f}: G \to G$ which lifts f. Dually, G is quasi-injective if for any subgroup H and any map $f: H \to G$ there is a map $\bar{f}: G \to G$ which lifts f.

1. Quasi-projectives in \mathcal{F}_p . We show first that every quasi-projective in \mathcal{F}_p is a direct sum of cyclics.

THEOREM 1.1. If G is quasi-projective in \mathcal{F}_p , then G is a direct sum of cyclics.

Proof. (By induction on the minimal k such that $p^kG = 0$.) If k = 1, then the result is immediate by [2], Theorem 1, or [3], Theorem 4.

Assume that k > 1 and consider $\overline{G} = G/G[p] \cap pG$. Since $G[p] \cap pG$ is fully invariant in G, \overline{G} is quasi-projective, hence, by induction, is a direct sum of cyclics. Write

$$ar{G} = \bigoplus_{i=1}^n \langle \bar{x}_i \rangle, \quad ext{where } \bar{x}_i = x_i + G[p] \cap pG.$$

Now choose a minimal γ so that $(G[p])^{\gamma} \neq G[p]$. Then, for some $i = i_0$,

socle
$$\langle x_{i_0} \rangle \notin (G[p])^{\gamma}$$

(this is true since $\{x_i\}$ generates G). Let π_0 be the projection of \overline{G} onto $\langle \overline{x}_{i_0} \rangle$, and f the quasi-projectively induced lifting of $G \to \overline{G} \xrightarrow{\pi_0} \langle \overline{x}_{i_0} \rangle$. Then $f(G) \subseteq \langle x_{i_0} \rangle + G[p]$. However, by Lemma 3 of [2], we may write

$$G[p] = \operatorname{socle}\langle x_{\ell_0}\rangle \oplus A \oplus (G[p])^{\gamma},$$

where A is homogeneous of value $\gamma' < \gamma$. Thus

$$\langle x_{\mathbf{f_0}} \rangle + G[p] = \langle x_{\mathbf{f_0}} \rangle \oplus A \oplus (G[p])^{\gamma},$$

a direct sum in \mathscr{F}_p . So we may follow f by projection onto $\langle x_{i_0} \rangle$ to obtain a valuated map $f' \colon G \to \langle x_{i_0} \rangle$. It is easy to see that $f'(\langle x_{i_0} \rangle) = \langle x_{i_0} \rangle$ so that f' will yield a splitting $G = \langle x_{i_0} \rangle \oplus \operatorname{Ker} f'$. But now $\operatorname{Ker} f'$, as a summand of G, is quasi-projective and the argument may be repeated to obtain G as a direct sum of cyclics.

THEOREM 1.2. Let

$$G = \bigoplus_{i=1}^{n} \langle x_i \rangle \text{ in } \mathscr{F}_p \quad \text{with } \operatorname{order} x_i = p^{k_i}.$$

Then G is quasi-projective if and only if, for all $m \ge 0$,

(QP1) if order $x_i < \text{order } p^m x_j$, then $v(x_i) > v(p^m x_j)$;

(QP2) if $v(x_i) \leq v(p^m x_j)$, then $v(p^t x_i) \leq v(p^{t+m} x_j)$ for all $t, 1 \leq t \leq k_i - 1$.

Proof. Necessity. Suppose that G is quasi-projective. Let order x_i < order $p^m x_j$ and assume that $v(x_i) \le v(p^m x_j)$. Then there is a valuated map

$$f : \frac{\langle x_i \rangle}{\langle px_i \rangle} o \frac{\langle x_j \rangle}{\langle p^{m+1}x_j \rangle}$$

given by

$$x_i + \langle px_i \rangle \xrightarrow{f} p^m x_j + \langle p^{m+1}x_j \rangle$$
.

As a summand of G, $\langle x_i \rangle \oplus \langle x_j \rangle$ is quasi-projective. Hence

$$\langle x_i \rangle \oplus \langle x_j \rangle \rightarrow \frac{\langle x_i \rangle}{\langle p x_i \rangle} \oplus \frac{\langle x_j \rangle}{\langle p^{m+1} x_j \rangle} \xrightarrow{f \oplus 0} \frac{\langle x_i \rangle}{\langle p x_i \rangle} \oplus \frac{\langle x_j \rangle}{\langle p^{m+1} x_j \rangle}$$

can be lifted. Since order $x_i < \text{order } p^m x_j$, this is clearly impossible. This proves (QP1).

To prove (QP2) assume that $v(x_i) \leq v(p^m x_j)$ again. Arguing as above, the map f must lift to a valuated map $\bar{f}: \langle x_i \rangle \to \langle x_j \rangle$. It is easy to check that $\bar{f}(x_i) = cp^m x_j$, where (c, p) = 1. Thus, $v(p^i x_i) \leq v(p^{i+m} x_j)$ for all t, $1 \leq t \leq k_i - 1$.

Sufficiency. Suppose that G satisfies (QP1) and (QP2). Let $f: G \to G/K$ be valuated. For each i write $f(x_i) = u_i + K$, where $u_i \in G$ with $v(u_i) = v(u_i + K)$. Since $G = \bigoplus \langle x_i \rangle$ in \mathscr{F}_p , it is enough to show that order $u_i \leq \operatorname{order} x_i$ and $v(p^r x_i) \leq v(p^r u_i)$, $1 \leq r \leq k_i - 1$. Indeed, $x_i \to u_i$ induces then a valuated endomorphism of G, which clearly lifts f. Say

$$u_i = \sum_{j=1}^n a_{ij} x_j.$$

Now $v(x_i) \leq v(u_i + K) = v(u_i) \leq v(a_{ij}x_j)$ for all j. By (QP2), $v(p^r x_i) \leq v(p^r a_{ij}x_j)$ for all j, and hence $v(p^r x_i) \leq v(p^r u_i)$, $1 \leq r \leq k_i - 1$. If order u_i > order u_i , then order $u_{ij}x_j$ > order u_i for some j. Thus, by (QP1), $v(x_i) > v(a_{ij}x_j) \geq v(u_i) - a$ contradiction.

2. Quasi-injectives in \mathcal{F}_p . In the quasi-injective case we are able to prove a stronger version of Theorem 1.1.

We begin with a useful lemma.

LEMMA 2.1. Let G be a valuated group, and $\bigoplus_i \langle x_i \rangle \oplus C$ a valuated direct sum contained in G such that $v(x_i) \leqslant v(c)$ for all x_i and $c \in C$. Suppose that for each i there is $a_i \in G$ with $pa_i = x_i$. Then $A \oplus C$ is a valuated direct sum in G, where $A = \bigoplus_i \langle a_i \rangle$ as an abelian group.

Proof. It is easy to check that $\bigoplus_i \langle a_i \rangle \oplus C$ is an abelian group direct sum. Since $v(a_i) < v(c)$ for all a_i and $c \in C$, it follows that projection onto A is a valuated map.

THEOREM 2.1. Let G be a countable bounded quasi-injective valuated group whose support is order isomorphic to a subset of the set Z^+ of positive integers. Then G is a direct sum of cyclics as a valuated group.

Proof. (By induction on k, where $p^kG = 0$.) If k = 1, then the result follows from Theorem 1 in [2].

For k > 1, consider G' = G[p] + pG. As a fully invariant subgroup of G, G' is quasi-injective. Hence, by induction,

$$G' = \bigoplus_{i} \langle y_i \rangle \bigoplus_{j} \langle x_j \rangle,$$

where the y_i 's and x_j 's are chosen so that $h_p^G(y_i) = 0$ and $h_p^G(x_j) \ge 1$ for all i, j. Let

$$Y = \bigoplus_{i} \langle y_i \rangle$$

and let π_Y be the natural projection of G' onto Y. By quasi-injectivity of G, π_Y lifts to a valuated endomorphism $f: G \to G$. Note that Im $f \subseteq Y + G[p] \subseteq G'$. Therefore, we may follow f by π_Y to get a splitting $G = Y \oplus G_1$, where $G_1 = \operatorname{Ker} \pi_Y f$. Since pY = 0, Y is a direct sum of cyclics (by [2], Theorem 1).

As a summand of G, G_1 is also quasi-injective. Furthermore,

$$pG_1 = \bigoplus_{j} \langle x_j \rangle$$

as a valuated group. Write $\{v(x_j)\}$ as $\{\gamma_1 < \gamma_2 < \gamma_3 < \ldots\}$ and let

$$egin{aligned} X_1 &= igoplus_{j \in J_1} \langle x_j
angle, & ext{where } J_1 &= \{j \mid v(x_j) = \gamma_1\}. \end{aligned}$$

For all $j \in J_1$, choose $a_j \in G_1$ such that $pa_j = x_j$, and let $A_1 = \bigoplus_{j \in J_1} \langle a_j \rangle$ (as an abelian group). Now let π_1 be the projection of pG_1 onto X_1 . By quasi-injectivity, π_1 lifts to $f_1 \colon G_1 \to G_1$. Note that

$$\operatorname{Im} f_1 \subseteq A_1 + G_1[p] \subseteq A_1 + \bigoplus_{j \notin J_1} \langle x_j \rangle.$$

By Lemma 2.1, $A_1 \oplus \bigoplus_{j \notin J_1} \langle x_j \rangle$ is a valuated direct sum. Hence we may follow f by projection onto A_1 to obtain a splitting

$$G_1 = A_1 \oplus G_2, \quad ext{ where } \mathop{\oplus}_{j \notin J_1} \langle x_j \rangle \subseteq G_2.$$

Continuing as above, we obtain a valuated direct sum

$$G_1 = \bigoplus_{i=1} A_i$$
 with $pA_i = \bigoplus_{j \in J_i} \langle x_j \rangle$ and $J_i = \{j \mid v(x_j) = \gamma_i\}$.

Each A_i is quasi-injective and the technique above can be used to obtain A_i as a direct sum of cyclics (possibly countable). Thus G is a valuated direct sum of cyclics.

Corollary 2.1. Any quasi-injective in \mathcal{F}_p is a direct sum of cyclics.

THEOREM 2.2. Let

$$G = \bigoplus_{i=1}^{n} \langle x_i \rangle$$

be a direct sum of cyclics in \mathscr{F}_p , with order $x_i = p^{k_i}$, $1 \leq i \leq n$. Then G is quasi-injective if and only if

(QI1) $k_i < k_j \text{ implies } v(p^{k_i-1}x_i) < v(p^{k_i}x_j);$

(QI2) if $v(p^tx_i) \leqslant v(p^{k_j-1}x_j)$ for some $t \geqslant 0$, then $v(p^{t-s}x_i) \leqslant v(p^{k_j-1-s}x_j)$ for all $s, 0 \leqslant s \leqslant t$.

Proof. Necessity. Assume that G is quasi-injective. If $k_i < k_j$, but $v(p^{k_i-1}x_i) \ge v(p^{k_i}x_j)$, then $f: \langle p^{k_i}x_j \rangle \to G$, given by $f(p^{k_i}x_j) = p^{k_i-1}x_i$, is a valuated map which does not lift to an endomorphism of G (since it would decrease height). This proves (QI1).

Now suppose that $v(p^tx_i) \leq v(p^{k_j-1}x_j)$. Then $f(p^tx_i) = p^{k_j-1}x_j$ defines a valuated map $f: \langle p^tx_i \rangle \to G$, which must lift to a map $\langle x_i \rangle \to \langle x_j \rangle$ in which $x_i \to cp^{k_j-t-1}x_j$ with (c, p) = 1. This implies (QI2).

Sufficiency. Assume that G satisfies (QI1) and (QI2).

Let H be a subgroup of G and let $f: H \to G$ be a valuated map. We will show that f can be lifted by induction on k, the number of non-zero projections $\pi_i(H)$, where π_i is the projection of G onto $\langle x_i \rangle$, $1 \le i \le n$. If k = 1, f can be lifted directly by (QI2).

For k > 1, we consider two cases.

Case I. Suppose that $H \cap \langle x_i \rangle \neq (0)$ for some i. Then, using (QI2), it is easy to lift

$$f|_{H\cap\langle x_i
angle}\oplus 0\colon H\cap\langle x_i
angle\oplus [\mathop{\oplus}\limits_{j
eq i}\langle x_j
angle] o G$$

to a map $f_i: G \to G$. Note that $f_i(1-\pi_i) = 0$. Then $f-f_i$ induces a map $f': H' \to G$, where $H' = (1-\pi_i)H$, by

$$f'(1-\pi_i)(h) \equiv (f-f_i)(h).$$

This map is well defined since if $(1-\pi_i)(h_1) = (1-\pi_i)h_2$, then $h_1 - h_2 \in H \cap \langle x_i \rangle$, so $(f-f_i)(h_1 - h_2) = 0$. By induction, since H' has at least one non-zero projection less than H, f' can be lifted to a map $\bar{f}: G \to G$ which can be chosen with $\bar{f}(x_i) = 0$. It is easy to check that $\bar{f}(1-\pi_i)+f_i$ is the desired lifting of f.

Case II. Suppose that $H \cap \langle x_i \rangle = (0)$ for all *i*. In this case, choose *i* so that $v((\pi_i H)[p])$ is maximal. As before, it is easy to check that $f'(1-\pi_i)(h) = f(h)$ defines a map from $(1-\pi_i)H$ to G. To prove that f'

is a valuated map it is enough to show that we cannot have $v(c_i x_i) < v(c_j x_j)$ for all $j \neq i$ for some element $(c_i x_i + \sum_{j \neq i} c_j x_j) \in H$. (Recall that G has the direct sum valuation.) Now, if the above were true for some element of H, choose p^k such that $0 \neq p^k c_i x_i \in \langle x_i \rangle [p]$. But

(*)
$$v(c_j p^k x_j) > v(c_i p^k x_i)$$
 for all $j \neq i$,

for otherwise, by (QI2), $v(c_jx_j) \leq v(c_ix_i)$ for some j. Thus (*) contradicts the maximality of $v((\pi_iH)[p])$ and f' is valuated. By the induction hypothesis, lift f' to $\bar{f}': G \to G$ and let $\bar{f} = \bar{f}'(1-\pi_i)$. Then \bar{f} is the desired lifting of f.

REFERENCES

- [1] L. Fuchs, Infinite abelian groups, Vol. I and II, Academic Press, 1970.
- [2] Vector spaces with valuations, Journal of Algebra 35 (1975), p. 23-38.
- [3] R. Hunter, F. Richman and E. A. Walker, Finite direct sums of cyclic valuated p-groups, Pacific Journal of Mathematics 69 (1977), p. 97-104.
- [4] F. Richman and E. A. Walker, Valuated groups, Journal of Algebra 56 (1979), p. 145-167.

THE UNIVERSITY OF CONNECTICUT STORRS, CONNECTICUT

Reçu par la Rédaction le 2.5.1978