CONTEXTS 0. Introduction.......................................................................................................................................................................... 5 Part I MODELS OF EPIDEMICS FOli INFECTIOUS DISEASES 1. Informal description of the phenomenon of epidemics and construction of mathematical models........................................................................................................................................................ 5 2. General characterization of the classical models of epidemics................................................................................ 6 3. General characterization of models based on the theory of branching processes............................................... 8 4. First group of models: geographical spread of epidemics........................................................................................ 9 5. Second group of models: influence of changes of infectioussness on the course of epidemic........................ 18 6. Third group of models: preventive activity of health service........................................................................................ 22 7. Discussion........................................................................................................................................................................... 28 Part II SPREADING OF NON-INFECTIOUS DISEASES 8. Introduction........................................................................................................................................................................... 31 9. Formal presentation of the model of reproduction and inheritance of types........................................................... 32 10. Tests for detecting time-dependent inheritance mechanisms............................................................................... 34 11. Possibility of estimating distributions appearing in the assumptions of the model.................................................................................................................................................................................. 37 12. Probability generating function of the number of offsprings of different types...................................................... 43 13. Discussion......................................................................................................................................................................... 44 References............................................................................................................................................................................... 48
[1] Norman T. J. Bailey, The mathematical theory of epidemics, London 1957.
[2] M. S. Bartlett, Stochastic population models in ecology and epidemiology London 1960.
[3] R. Bartoszyński, Some limit properties of generalized branching processes, Bull. Acad, Polon. Sci., Ser. Ill, 15 (1967), pp. 157-160.
[4] R. Bartoszyński, A limit property of a certain branching process, ibidem 15 (1967), pp. 615-618.
[5] R. Bartoszyński, Branching processes and the theory of epidemics, Proc. Fifth Berkeley Symposium on Probability and Statistics, Berkeley 1967, pp. 259-269.
[6] R. Bartoszyński, A model of age-dependent inheritance of cancer proneness, Proc. 36-th Congress of ISI (abstract).
[7] R. Bartoszyński, and H. D'Abrera, On age dependant inheritance of cancer proneness, Journ. Australian Stat. Soc. (to appear).
[8] R. Bartoszyński, and J. Łoś, M. Wycech-Łoś, Contribution to the theory of epidemics, in Bernoulli, Bayes, Laplace Anniversary Volume, Berkeley 1963, pp. 1-8.
[9] K. Dietz, On the model of Weiss for the spread of epidemics by carriers, Journ. of Applied Probability 3 (1966), pp. 375-382.
[10] W. Feller, An introduction to probability theory and its applications, vol. I, New York, London, Sydney 1955.
[11] W. Feller, An introduction to probability theory and its applications, vol. II, New York, London, Sydney 1966.
[12] J. Gani, On a partial differential equation of epidemic theory, Biometrica 52, 3-4 (1965), pp. 617-622.
[13] T. Harris, Theory of branching processes, Springer Verl., 1963.
[14] D. G. Kendall, Deterministic and stochastic epidemics in closed populations, Proceed. Third Berkeley Symposium on Probability and Statistics, Berkeley 1955.
[15] J. Neyman and E. L. Scott, A stochastic model of epidemic, published in the volume: Stochastic models in medicine and biology, ed. J. Gurland, Wisconsin 1964.
[16] V. Siskind, A solution of the general stochastic epidemic, Biometrika 52, 3-4 (1965), pp. 613-616.
[17] C. J. Ridler-Rowe, On a stochastic model of an epidemic, Journ. of Applied Probability 4 (1967), pp. 19-33.
[18] G. H. Weiss, On the spread of epidemics by carriers, Biometrics 21 (1965), pp. 481-490.
[19] T. Williams, The simple stochastic epidemic curve for large populations of susceptibles, Biometrika 52, 3-4 (1965), pp. 571-579.