Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Cover of the book
Tytuł książki

Branching processes and models of epidemics

Seria

Rozprawy Matematyczne tom/nr w serii: 61 wydano: 1969

Zawartość

Warianty tytułu

Abstrakty

EN

CONTEXTS
0. Introduction.......................................................................................................................................................................... 5
Part I
MODELS OF EPIDEMICS FOli INFECTIOUS DISEASES
1. Informal description of the phenomenon of epidemics and construction
of mathematical models........................................................................................................................................................ 5
2. General characterization of the classical models of epidemics................................................................................ 6
3. General characterization of models based on the theory of branching processes............................................... 8
4. First group of models: geographical spread of epidemics........................................................................................ 9
5. Second group of models: influence of changes of infectioussness on the course of epidemic........................ 18
6. Third group of models: preventive activity of health service........................................................................................ 22
7. Discussion........................................................................................................................................................................... 28
Part II
SPREADING OF NON-INFECTIOUS DISEASES
8. Introduction........................................................................................................................................................................... 31
9. Formal presentation of the model of reproduction and inheritance of types........................................................... 32
10. Tests for detecting time-dependent inheritance mechanisms............................................................................... 34
11. Possibility of estimating distributions appearing in the assumptions of
the model.................................................................................................................................................................................. 37
12. Probability generating function of the number of offsprings of different types...................................................... 43
13. Discussion......................................................................................................................................................................... 44
References............................................................................................................................................................................... 48

Słowa kluczowe

Tematy

Miejsce publikacji

Warszawa

Copyright

Seria

Rozprawy Matematyczne tom/nr w serii: 61

Liczba stron

48

Liczba rozdzia³ów

Opis fizyczny

Dissertationes Mathematicae, Tom LXI

Daty

wydano
1969

Twórcy

Bibliografia

  • [1] Norman T. J. Bailey, The mathematical theory of epidemics, London 1957.
  • [2] M. S. Bartlett, Stochastic population models in ecology and epidemiology London 1960.
  • [3] R. Bartoszyński, Some limit properties of generalized branching processes, Bull. Acad, Polon. Sci., Ser. Ill, 15 (1967), pp. 157-160.
  • [4] R. Bartoszyński, A limit property of a certain branching process, ibidem 15 (1967), pp. 615-618.
  • [5] R. Bartoszyński, Branching processes and the theory of epidemics, Proc. Fifth Berkeley Symposium on Probability and Statistics, Berkeley 1967, pp. 259-269.
  • [6] R. Bartoszyński, A model of age-dependent inheritance of cancer proneness, Proc. 36-th Congress of ISI (abstract).
  • [7] R. Bartoszyński, and H. D'Abrera, On age dependant inheritance of cancer proneness, Journ. Australian Stat. Soc. (to appear).
  • [8] R. Bartoszyński, and J. Łoś, M. Wycech-Łoś, Contribution to the theory of epidemics, in Bernoulli, Bayes, Laplace Anniversary Volume, Berkeley 1963, pp. 1-8.
  • [9] K. Dietz, On the model of Weiss for the spread of epidemics by carriers, Journ. of Applied Probability 3 (1966), pp. 375-382.
  • [10] W. Feller, An introduction to probability theory and its applications, vol. I, New York, London, Sydney 1955.
  • [11] W. Feller, An introduction to probability theory and its applications, vol. II, New York, London, Sydney 1966.
  • [12] J. Gani, On a partial differential equation of epidemic theory, Biometrica 52, 3-4 (1965), pp. 617-622.
  • [13] T. Harris, Theory of branching processes, Springer Verl., 1963.
  • [14] D. G. Kendall, Deterministic and stochastic epidemics in closed populations, Proceed. Third Berkeley Symposium on Probability and Statistics, Berkeley 1955.
  • [15] J. Neyman and E. L. Scott, A stochastic model of epidemic, published in the volume: Stochastic models in medicine and biology, ed. J. Gurland, Wisconsin 1964.
  • [16] V. Siskind, A solution of the general stochastic epidemic, Biometrika 52, 3-4 (1965), pp. 613-616.
  • [17] C. J. Ridler-Rowe, On a stochastic model of an epidemic, Journ. of Applied Probability 4 (1967), pp. 19-33.
  • [18] G. H. Weiss, On the spread of epidemics by carriers, Biometrics 21 (1965), pp. 481-490.
  • [19] T. Williams, The simple stochastic epidemic curve for large populations of susceptibles, Biometrika 52, 3-4 (1965), pp. 571-579.

Języki publikacji

EN

Uwagi

Identyfikator YADDA

bwmeta1.element.desklight-a447e5de-6e29-4f7e-b0a4-882f90c9c745

Identyfikatory

Kolekcja

DML-PL
Zawartość książki

rozwiń roczniki

JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.