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1. Introduction. Let ) a, be a convergent series with 0 <a, ., < a, for all
n and let

E=c¢a,¢,=00r1(n=1,273,..)

denote its set of subsums. Also, let

r, = Z ag
k=n+1
denote the n-th “tail” of the series.

The following three facts about the set E were discovered in 1914 by
Kakeya [4], and rediscovered by Hornich [3] in 1941 (see also the 1948
paper of Menon [7]):

A. E is a perfect set.

B. E is the finite union of closed intervals if and only if a, <r, for n
sufficiently large. (Also, E is an interval if and only if a, <r, for all n.)

C. If a, >r, for n sufficiently large, then E is homeomorphic to the
Cantor set.

In the same paper [4], Kakeya conjectured that if a, > r, for infinitely
many n, then E is nowhere dense (and hence homeomorphic to the Cantor
set). It appears that the first counterexample to this conjecture was the one of
Weinstein and Shapiro [9] given, without proof, in 1980. Independently,
Ferens [2] gave another example, including proof, in 1984. Both of these
examples have a, > r, if n =0 (mod 5), while a, <r, otherwise, and yet the
set E contains a closed interval, and therefore is not nowhere dense. In
Section 2 we give another example which is much simpler than the two
mentioned above.

In at least two cases, authors [5], [8] have claimed that the set E of
subsums must always be either a finite union of closed intervals or homeo-
morphic to the Cantor set. The examples cited show that this claim is false.
Another paper ([1]) has a result on the subject which is neither complete nor
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precise. We show, however, in Section 3 that the set E is always a finite
union of closed intervals, homeomorphic to the Cantor set or homeomorphic
to the set of subsums of the examples above.

In Section 4 we generalize that result to show that the range of any
finite measure is either a finite set or a set of one of the three types just
mentioned.

2. An example. The example given in this section shows that a, > r, for
infinitely many n is not a sufficient condition for the set of subsums to be

homeomorphic to the Cantor set.
Let a,,_, =3/4" and a,,=2/4" (n=1, 2,...). Then

ran = (5/3)(1/4%) < 2/4" = ay,.
We will show that [3/4,1] < E. Let

k

€1y €2y ovy Eqp) = Z (£2i—l(3/4i)+825(2/4i))’ g=0or1,

i=1

and

k
(61, 52""76k)= Z (si/4i, 5,-=0, 1,2,3.
i=1

To prove [3/4, 1] < E it is sufficient to show that every x = (J,, 0, ..., &)
with 6, =3 is of the form (g, €,, ..., £5,). This will be done by induction
on k. The conclusion is clearly true for k = 1. Now suppose it is true for all
integers from 1 to k. Let x = (d,, 03, ..., d;+1) With 8, = 3. The induction step is
clear if 6,4, =0, 2 or 3, so now assume J,,,; = 1. Choose n to be the largest
integer for which 1 <n <k and §, > 0. Then, by the induction hypothesis,
we can write

(51, 62, ceey 6,'-1) = <81, €2y .0y 82,').
Hence
(61’ 52, ceey 6k+l) = <£1, €2y oy Eopy 1, 0, 1, 0, ceey 1, 0, l, l).

3. Topological structure of E. Before stating the theorem which charac-
terizes the topological structure of the set of subsums of a positive term series,
we make the following simple observation which will be used in the proof of
the theorem. If E is the set of subsums of ) a,, and E, is the set of subsums
of some tail of ) a,, then E is a finite union of translates of E,.

THEOREM 1. If E is the set of subsums of a positive term convergent series
Ya,, then E is one of the following:
(i) a finite union of closed intervals;
(ii) homeomorphic to the Cantor set;
(iii) homeomorphic to the set T of subsums of the example in Section 2.



SUBSUMS OF AN INFINITE SERIES 325

Proof. Suppose that E is neither a finite union of intervals nor
homeomorphic to the Cantor set. Then it is clear that the complement of E
must contain infinitely many intervals. E must contain infinitely many
intervals as well, for if there were only finitely many, then either E N[0, ¢) is
an interval for some ¢ > 0 or E N[0, ¢) contains no interval for some ¢ > 0. If
the former is true, then there is some tail of ) a, which has an interval as its
set of subsums, and therefore E would be a finite union of intervals. If the
latter holds, then E N[0, £] is homeomorphic to the Cantor set, and there is
a tail of ) a, which has the Cantor set as its set of subsums. Thus E would
be homeomorphic to the Cantor set. This is again a contradiction to our
initial supposition. Thus E contains infinitely many intervals.

In fact, E n[a, b] cannot be homeomorphic to the Cantor set for any
a, beE, since every tail of ) a, must have intervals in its set of subsums.
Suppose then that, for some x€E,

En(x,x+&) =@ for some ¢ > 0.

Then, since E is perfect, E n(x—¢, x) # @ for every ¢ >0, and therefore
there are intervals in E arbitrarily close to x.

We now define a strictly increasing mapping f from the union of all
intervals of T onto the union of all intervals in E. We can define the mapping
inductively. Begin by mapping the longest interval in T in a strictly increasing
way onto the longest interval in E. There can be at most finitely many intervals
of the same length in either set, so we may choose the left-most interval in
case no one interval is longest.

After the n-th step, 2"—1 intervals [a;, 8,1 = T (1 <j<2"-1, §; <a;,)
will have been identified, in a strictly increasing way, with intervals
[«}, B;] = E. Now repeat the above process on each subset of T lying in
[Bj, #;+1] (G <2"—1) or in [0,a,] or in [B,, ,,5/3] That is, map the
longest interval in every such portion of T to the longest interval in E lying
in [8j, #j+,] G <2"—1) or in [0, «}] or in [B,._,, 2 &), respectively.

When f'is defined in this way, it is a strictly increasing mapping of the
union of all intervals in T onto the union of all intervals in E. The property
verified above that each point of E (and of T) is the limit of a sequence
chosen from the intervals of the set allows us to extend f continuously to all
of T, and guarantees that the extension will be onto E. The extension will be
strictly increasing and, therefore, one-to-one. Since T is compact, f is the
desired homeomorphism.

We now give an example of a set which is homeomorphic to the set T of
Theorem 1. The set will help us to visualize the set T.

Let C denote the Cantor ternary set and let S, denote the union of the
2"~! open middle thirds which are removed from [0, 1] at the n-th step in
the construction of C. Then

]
C=[0,1]~ () S,.

n=1
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From the proof of Theorem 1 it is not difficult to see that T is homeo-
morphic to

Cu U S-s-
n=1

In Section 1 we noted that a, < r, for n sufficiently large is a necessary
and sufficient condition for the set of subsums to be a finite union of closed
intervals and that q, > r, for n sufficiently large is a sufficient condition for
the set of subsums to be homeomorphic to the Cantor set. These facts
together with Theorem 1 show that for the set of subsums to be homeo-
morphic to the set T of Theorem 1 it is necessary that a, < r, for infinitely
many n and a, >r, for infinitely many n. That this is not a sufficient
condition is seen in the following example.

Let a;,-y = a5, =2/5"for n=1,2,... Then r,,_; = 3/5" > a,,_, while
ran = 1/5" <a,,. The set of subsums of ) a, is clearly the set of those
numbers in [0, 1] which have a base-5 expansion using only 0, 2 and 4. This
set is clearly homeomorphic to the Cantor set.

It would be of interest to obtain useful necessary and sufficient condi-
tions for the set of subsums to be homeomorphic to the Cantor set.

4. The range of a finite measure. Let ) a, be a positive term convergent
series and let N denote the set of positive integers. If A = N, define i by
(A =Y a,.

neAd
Then u is a finite measure, defined on the power set of N, whose range is the
set of subsums of Y a,. In this section we prove the following generalization
of Theorem 1 to ranges of arbitrary finite measures.

THEOREM 2. The range of any finite measure is one of the following:
(1) a finite set;

(it) a finite union of intérvals:

(iii) homeomorphic to the Cantor set;

(iv) homeomorphic to the set of subsums of the example in Section 2.

Proof. Let (2, #, u) be an arbitrary finite measure space. A result from
measure theory (see, e.g., [6], p. 100) assures us that we can find disjoint sets
C and D for which Q = CuD and, if we let

pc(A) = p(AnC) and  pp(A) = p(AND)

for all Ae.#, then the range of y, is the set of all subsums of a finite
(possibly empty) sum or an infinite series. and the range of j is the interval
[0, uc ()] (possibly 0! if 4(C) = 0). We note then that the range of u is the
algebraic sum of the range of y and the range of u,,. The proof is completed
by considering cases, keeping in mind that the range of y, is a finite set or
one of the three types of sets of Theorem 1, and the range of yc is an interval
or {0].
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