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Difference inequalities of the elliptic type

by Z. KowALSKI and A. Pri§ (Krakéw)

1. In this paper we shall deal with the difference inequality of the
elliptic type:

n n
(1.1) Dalfup NpMeyM oMoy M > e,
2,j=l j=1
where ™ and v™¥ (i,5 =1, ..., n) denote difference expressions for the
first and second partial derivatives du[0r; and 0%2u[0x;0x;, respectively,
at the nodal point M.

We prove (cf. Theorem 2) that, inequality (1.1) being fulfilled, the
maximum value of the function 4™ does not exceed some positive quantity
g(h), ct. (11.3).

Theorem 3 gives the corresponding result for the difference inequality
of the elliptic type of the form (14.1) and the minimum value of the
function »™ in the set Q.

These results can be used to obtain the error estimate of the dif-
ference method for elliptic differential equations.

Having an approximate solution #™ of a difference equation at the
nodal points ¥, we can obtain the effective estimate for 4 —u(z™)
from Theorems 2 and 3, u(x) being the solution of the corresponding
differential equation. The estimations (4.1) can easily be computed. The
results will be published later.

However, for the theoretical proof of convergence of the difference
method for elliptic equations with mixed derivatives the difficulty of
proving conditions (4.1) should not be overlooked, cf. A. Pl (). In this
paper we assume that conditions (4.1) are fulfilled.

2. We shall denote by @ the set of points of the real n-dimensional
space R":

(2.1) Q:0<z;<e (j=1,...,n; 0< ¢ = const).
We denote by M the sequence of indices
(2.2) M = (my,myy...,m;), O<m<N (j=1,...,n),

(*) A. Pli§, Loss of uniqueness property in difference approzimation of a Dirichlet
problem, Comm. Math. 14 (1970), p. 97-99.
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and by 2 the nodal point with the coordinates
(2.3) a™ = (wfla méll’ crey m'I:l),

where #} =m;h (j =1,...,m), and 0<h = ¢/N, N being a natural
number.

We shall consider also the nodal points in the set @ characterized
by the following sequences of indices:

JM) = (myy.oymy),  my = m;+1, m; =m; for ¢ #j,

(2‘4) . ] ’ ’ ’ . .
—j (M) = (my, ..., my,), my =m;—1, m; =m; for v #j,
(t=1,..,m5 ) =1,...,m),
and for ¢ #j:
(M) = (miv °-'y'm’;z)7 ' 'm’; =m;+1, m1, =m;+1,
(2.5) —2_7(M) = (mi’ --"m;a)’ - omy = my—1, 'm’;"-=mj+1'7

i
—i—j(M) =(m17"'7m;z)1 'mg:mi_ly m_;":mj—l,
i=j () = (mi, ..., m), i = mt1, mp = my—1,

where m, = m, in formula (2.5) for s =1, ...,n; 8 # i 8 # j, cf. Fig. 1.

i A
~ij(M) | (M) . (M
XY x/ *.xu )
h
x-iM) . xM ' Xi(H)
—e— — ————>
_?———J Xi
~— —— —e .
xM) xJM xt-ity

Fig. 1. The nodal points ™, (M), gii(3),
... For the sake of simplicity we have
placed the nodal point M at the origin

The nodal point ¢j(M) can be denoted also by Jz( M) since we define
y(M) = ji(M), (M) =j—(M),
(2.6) —i—j(M) = —j—i(M), i—j(M) = —ji(M)
for i #j (i =1,...,n;j=1,...,n).



We shall denote by int@ the set of nodal points (2.3) which belong
to the interior of the set @ (cf. (2 1)) and by sym A the set of nodal points
M such that zMeintQ and 2™
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e intQ simultaneously,

symmetmc with respect to the nodal point z4.

3. Let us denote by uM

point z™.

the value of the functlon # at the nodal

We shall consider the difference quotients

(3.1) ull

(3.2)

1 :
4y T (M)
n

w™i

. 1
Yy § Mj __ .,
™y, ul % (w
i (ua(.M) —:i(M))
2h

or the first partial derivatives and the difference quotients

WMi — 2 (4D

(3.3)

for the second

WM = LR (D g

derivatives.

M —i(M
—2-uM 4y )),
— (M) __

wiIOD | g =i=i(30)y

From definitions (3.1), (3.2), (3.3), it follows that

(3.4) wM = }-(u W),

We shall use also the difference quotients w2, u™¥ yM7 oM cf Fig. 1:

— h~2. (ulj(M) —

Mij
wyt

" Mij

(3.5) o

u]’l/l (5]

— h—z . (uj(M) _ u—ij(M)
— h—z . (,uM _ u—i(]l[) _
. _ h—2‘ (ul(M) . ,MM _

M) _

.
h

w1y My

M —i(M
—uM 4Dy,
—i(M — (M
™I | gy TN

From (3.5) and (3.3) it follows that
o g (4

4. Throughout this paper we shall use the following

(3.6)

Assumprions H. (1) Suppose that the function u™

w7+ uP ).

nodal points (2.3) of the set @, cf. (2.1).

(2) There exists a positive constant L > 0 (independent of the mesh
size h) such that the second order differemce quotients satisfy the conditions

IuMJ'J'_
(41) I'M/M”
for P = s(M)

Pji| h°L
< h- L,

Pu l

(¢ = 41,

12,...

Wi —ud <RI,
|u.Mu Pn ]< h L
’ iln’)’

being h in the direction of the wz;-axis.

(g M
- (u+7_

K
(¢ #7)

the distance between =™ and zF

.

for ¢ #j.

My Pu

z" and o™ being

(¢ #1)

t8 defined at the
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(3) We suppose that
(4.2) WM< A (@E=1,..,n;j=1,...,n), McintQ,

where the constant A is independent of the mesh size h.
(4) Let us consider the difference inequality for the fumction u™:

n n
(4.3) D alf M4 N MM MM —,
ii=1 i=1
for zMeintQ, 0 < & = const. We suppose that 1° inequality (4.3) is of
elliptic type, which means that Z aif A d; (2™ Q), is a positively defined

2,5=1
quadratic form, and 2° the coefficients alf, b}, ¢™ satisfy the conditions

(4.4) la’ij < ¥, [b5M|<ﬁ7 M <7 <0,

the constants y, B and n being independent of the mesh size h.

(5) We suppose that u™ = 0 for 2™ < 8Q, where dQ denotes the boundary
of the set Q.

(6) The characteristic roots s., 8, >0 (k=1,...,n) of the form
2 aXi;2; are bounded:

l] 1
(4.5) 0< 6, <8,<8 (k=1,...,n),
8, and 8, being independent of the mesh size h.

5. Remark 1. Let us denote by F¥ the linear form and by S* the
quadratic form

(5.1) FM Zw (m; —a;)h Z - (m; — a;) (m; — a;) k2,

1,j=1

for a fixed nodal point z4 e intQ a,nd for an arbitrary nodal point 2™ Q.
Let 2™ (zM e Q) be the function

(5.2) M — Myt _FM_ M (z¥M Q).

‘Under these assumptions the function z¥ vanishes together with the
first and the second order difference quotients at the fixed nodal point z4:

(5.3) z4 =0, 29 =0, P7—9 (p=1,2,...,m; ¢ =1,2,...,n).
The simple proof will be omitted.

6. We shall now give Lemma 1 on the extended mean value theorem
for the function u™.

- LEMMA 1. Let us suppose that the function u™ satisfies Assumptions H
and denote by x4 an arbitrary fized nodal point, e intQ.
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Under these assumplions
n n .
(6.1) u™ =ut+ ZuAj’(mj_ a;) h+3%- Z w-(m;— a;) (m; — a;)-h*+ R,
j=1 £,j=1

for ™ Q. In formula (6.1) the rest term R is of the form
(6.2) ' R = 26-h3-L-|m—a|?,

where M = (Myy ..., m,), A =(ay,...,a,), 0 is a number 10| <1, and
[m — a| denotes by definition

n
(6.3) Im—al = ) im;—al.
j=1

The proof of Lemma 1 will be omitted.

7. LEMMA 2. Let us suppose that the function u™ assumes the mavimum
value at the nodal point x% inside the set Q, cf. (2.1):

(7.1) ut>=uM  for xMeQ, x¥eintQ.

Under these assumpiions the difference quotients of the first order u®,

ud, u? satisfy the conditions

(7.2) [ < h-[wP),  ([w| <k, - [ud) < b lud],

for j =1,...,n, at the nodal point x4 eintQ.
The simple proof of Lemma 2 will be omitted.

8. We shall now give a modification of the (well-known) lemma on
quadratic forms.

LEMMA 3. We shall assume that the quadratic forms f, and f, satisfy
the conditions

n n
(8.1) fo=D)a2h; =0, fo= D byuu<dip)
i,j=1 t,j=1
Jor pe R, where d(u) >0 for 0 # p = (pyy ..., pn) € B, a5 = a;;,
(¢, =1,...,m).

Let us denote by ay; (k,1 =1, ..., n) the orthogonal matrix which trans-
forms f, into the canonical form, and let s, (k = 1, ..., n) be the characteristic
roots (8,>0; k =1,...,n) of the form f,.

Under these assumptions

b, = by

i )

n n

(8.2) 2 @ij by < Zd(s}clz'ak)’
i,j=1 k=1
where a;, = (az; .-, a,) (K =1,...,m).

The simple proof of Lemma 3 will be omitted.
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9. LEMMA 4. Let us suppose that the function uw™ satisfies Assumptions
H, and assumes the mazimum value at the nodal point x?eintQ.
Under these assumptions the quadratic form 8™

(9.1) 8M = 3- M ut?-(m;—a;) (m;—a;) b2,
1,7=1

of. (b.1), satisfies the inequality:
(9.2) SM < 2:10|-h3L-)m—al® for e™ecsymA.

Proof. The function 4™ (zMe Q) can be expressed with the aid of
formula (6.1) (cf. Lemma 1); hence

(9.3) wM—ut = 2%‘“'('%,-—@,-)7&‘{‘%'2 uA‘ij'(mi_aiij_dj)hz—l'

j-] 1:,]'—1

+2:0-h3L-m—a|® for Q.

The left-hand member of (9.3) is non-positive by assumption:
wM —u? < 0 for ¢ Q. On the right-hand side of formula (9.3) the linear
form changes the sign and the quadratic form does not change the sign
when the nodal point #¥ is replaced by the nodal point ™ (2™ €Q), 2™
and 2™ being symmetric relative to x.

/(1N

Fig. 2. The sets @ = I-1I and @, in the two-dimensional
case (n = 2) as seen from the edge. The nodal points
z4®) (y = 1,2...) belong to the set @, (@; < @)

We shall estimate the quadratic form 8™ at that nodal point (2™
or £™°), where the linear form (with coefficients u4/) is non-negative.
Then that linear form can be omitted and we obtain from (9.3) the ine-
quality

(9.4) SM <L 2:10|-h%L-/m—al|® for a™ecsymA.
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This ends the proof of relation (9.2).

10. LEMMA 5. Let us denote by S(x), # = (#y, ..., 2,) ¢ RB", the quadratic
form

(10.1) S@) = D utd-(o;— o) (@—af') (v RY),
&1
where A = (ay, ..., a,) and z is the nodal point in the set Q,, Q, +# 0,

@, < intQ (cf. Fig. 3).

X, A

&

v || xainy)
[

]

-
X4

Fig. 3. The sets @, @, and V
in the two-dimensional case (n=2)

Let us denote by 8™ the discrete values of S(z) at the nodal points x™
wn the set @ (cf. (5.1)):

(10.2) §M 1 Zu‘“"-(mi—ai)(m,-—a]-)hz.

3,j=1

We shall suppose that u™ has a maximum in the set Q at the nodal
point x4, xteQ,:

(10.3) < ut  for zMe Q.
We shall denote by V, V < Q, the set
(10.4) V={w:lg;—aM|<h (§=1,...,0); h-|m—a| < 1%},

where a = const, 0 < a< 1 (cf. Fig. 3).
Under these assumptions we have the following estimate for the quadratic
form S(x) in the set V:

(10.5) Sz C(h) for eV,
where

(10.6) C(h) = 2-10]- L-h*+n-24 -k +n?-A-h2.
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Proof. The expansion of the function S(z) in the neighbourhood of
the nodal point ™ has the form

(10.7) S(z) = SM+2(ij)M-(m,-—wf’)Jr%-Z(Sxix,.)m'(wi—m?‘)(wj—wi”)-
j=1

i;j=1
For the derivatives S, and S,, we obtain from (10.1)
] (g ]
n
(10.8) 8z, = 2;2@”‘4{"'(%—“’?)5 Seia; = 2-u%;
j=1

‘hence _
n n
(10.9)  [(Sz)al <2- ) (W] o) —af| <24 ) |m;—ayl h
ji=1 i=1
=2 A-him—al;  (850)n < 24.

From (10.9) it follows that the second and last term in (10.7) has
the estimate

n

(o.10) (8,)ar (@ — &) + % Z (8 z;) aals — @) (0 — 27"

i=1 =1
< n-24h%m—a|+n2-Ak?  for |z;—xM|<h (G =1,...,n);

therefore from (10.10), (10.7) and Lemma 4 we obtain
(10.11) S(z)< 2|6|L-h®m—al®*+n-24h%*|m — a| + n?-Ah?,
for zMesymAd and |o;—2M| <h (j =1,...,n).

But in the set V (cf. (10.4)) we have h|m —a| < h°; hence (10.11)
and (10.4) imply that
(10.12) S(z) < 2|0/ L-B**+n-24-h'"t°*+n*-AR® for zeV.

This ends the proof of Lemma 5.

Remark 2. The estimate of the quadratic form S(x) for ¢ R" can
easily be found. For this purpose let us write

C(h) for 2V,

(10.13) Gxz—a4,h) =
2-:C(h) for we R"\V,

where # —24 = 1- (2> —24) (I > 1), 2° being the intersection point of the
boundary 4V with a segment joining the points #4 and .

From the definition of the quadratic form S(z) and from (10.5) it
follows that |

(10.14) S(x)<Gx—ax*, k) for xeR".
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Remark 3. From the estimate (10.14) of the quadratic form 8 (z)
and from Lemma 3 on quadratic forms it can easily be deduced that

(10.15) Yag-ut¥ < B(h),
%,j=1
where
(10.16) E(h) = ) G(s} a, h).
' k=1

Here 8, (k =1,...,n) denote the positive characteristics roots of

n
the form f, = > af A4, ay (k,1 =1,...,n) is the orthogonal matrix
=1

transforming f, into the canonical form, and a; = (a3;,..., az,) (K =1, ..., n).
In fact, f, is the positive defined form because of Assumptions H.
On the other hand, the form

n
10.17)  S(@) = Yut (@, —af) (@;,— )
1,j=1
n
ZuA”t“i-uj for u; = x;—af (1 =1,...,n),
%,j=1

posesses the estimate (10.14); hence (10.17), (10.14) ard Lemma 3 yield
the estimate (10.15).

11. THEOREM 1. Let us suppose that the function u™ satisfies Assump-
tions H. Suppose in addition that the difference imequality of the elliptic type

n n
(11.1) Zaﬁ;’-um"—i- Zb}”-um +eMuM > g,
=1 ‘

j=1

holds if ™ >0 for z™eintQ.
Under these assumptlions we have

(11.2) maxu™ < g(h),
MeQ
Jor
(11.3) 0<g(h) = —n - [E(h)+ D (k) +e].

where 0 < D(h) = nfhA, and E(h) is defined by (10.16) (cf. Remark 3).
Proof. Assuming the contrary, suppose that

(11.4) maxu™ > g(h).
mMcQ

Let us denote the lcft-hand member in formula (11.4) by ! (z%e intQ).
Thus we have

{11.5) u? > g(h).
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With (11.1) in mind we shall verify the following inequalities:

n
(11.6) 1Y ag-uti < B(h),
=1
i .
(11.7) D bt utl < D(h),
=1
(11.8) cAoud < npeul.

In fact, (11.6) follows from Remark 3.
From Lemma 2, cf. (7.2), (4.4) and (4.2), we obtain

(11.9) - Dbt ut < nphA = D),
j=1

which completes the proof of (11.7).

Inequality (11.8) follows immediately from assumption (4.4): ¢
<7< 0, since u? > 0 because of (11.5) and (11.3).

With (11.6), (11.7), (11.8) at hand we obtain first

A

(11.10) Za;g-uﬂ%r Dbt uti ot ut < B(h)+ D (k) +n-ut.
1,j=1 =1

But from assumption (11.5) and the definition of g(k) (cf. (11.3))
it follows that '
(11.11) ER)+Dh)+nut< —e

hence, from (11.10) and (11.11) we obtain the inequality

(11.12) g w4 Mo ut ot out < — e
ij=1 =1
Since inequalities (11.12) and (11.1) are contradictory, we conclude that
the maximum value 4 satisfies (11.2).
This ends the proof of Theorem 1.

12. LEMMA 6. Let us suppose that the function u™ satisfies Assumptions
H. Assume in addition that there exist a constant 0 < I'y = const and
a sequence h, (v =1,2,...) such that
(12.1) 0O<h, -0, asv—> +oo,
(12.2) Wi >r, (»=1,2,...),
x%, A = A(h,), being the nodal point, where the mazimum value is atlained:
uM < ud, for M Q.

Under these assumptions the nodal points 4, A = A(h) (» = 1,2,...)
are in the set @Q,, @, # 0, @, < @:

(12.3) Q. = {zeQ: r(w,0Q) > I'o/A,},
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where 7 (x, 0Q) denotes the distance between the point © and the boundary 0Q
of the set Q, A, > 0 is a constant (cf. Fig. 2) and the set , does not depend
on the value of h, (» =1,2,...). '

Proof. The difference quotients of the second order ™% are bounded
by the constant A for all & > 0 because of Assumptions H. This and the
boundedness of the set ¢ imply that the difference quotients of the first

order ™ are bounded by some constant A, > 0, A, obviously dependent
on A.

But 4* = 0 for ™ dQ; therefore we have
(12.4) M < Apr(e™,0Q) for aMeQ,

where 7 (™, 8Q) denotes the distance between the nodal point £ and the
boundary d¢Q (cf. Fig. 2). From inequality (12.2) it follows that the nodal
points 24, A = A(h,) (» = 1,2,...) cannot be in neighbourhood of the
boundary 0Q, since in the neighbourhood of the boundary ¢ the values
of u™ are less than I, (cf. (12.4) and (12.3)):

(12.5) [uM| < A,-r(z™, 0Q) < T,

for the nodal points z™ satisfying r(z¥, 0Q) < I,/ A,.

This proves that the nodal points x4, 4 = A(h,) (» =1,2,...) are
in the set Q,.

This ends the proof of Lemma 6.

13. THEOREM 2. Let us suppose that the function u™ satisfies Assump-
tions H, and the quantity e in (4.3) depends on h:

(13.1) 0<e=¢(h) >0, ash-—0.
Let us write . '
(13.2) u? = maxu™, A = A(h).
:L’MEQ

Under these assumptions
(13.3) : wi® 50, as h—0.

Proof. We shall proceed by assuming the contrary, and we suppose
that there exists a sequence h, (» =1,2,...), 0 < h, >0, a8 v - - o0,
such that

(13.4) wit >T, (v =1,2,...),
where 0 < I'j = const. .

From Lemma 6 it follows that z4¢Q,, 4 = A(h,) (» =1,2,...)
(cf. (12.3) and Fig. 2).

We shall prove that we have

(13.5) u® < Iy for h, sufficiently small.
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In fact, from Theorem 1 we have estimate (11.2), (11.3). In formula
(11.3) we have D(h,) = nfh,A — 0, as h, — 0, and n = const.

Let us consider the quantity E(h,) defined by formula (10.16). We
shall verify that

(13.6) E(,) —0, as h, —0.
For this purpose let us observe first that the points @, = (az;, ..., @) € B”

(k=1,2,...,n)(cf. (10.16)) are on the unit sphere, since a;; (¥, =1, ..., n)
is the orthogonal matrix. The characteristic roots 8;, 8, > 0 (k =1,...,n)

of the positive defined quadratic form }' aji;4, (cf. Assumptions H)

1,j=1
are bounded:

(13.7) 0<6,<8,<0 (k=1,...,m),
d, and d, being independent of the mesh size h. This implies that the
points s}*-a;,e R* (k = 1, ..., n) are in some bounded set Q, for all » > 0:
(13.8) si.g.eQ, for h> 0.

On the other hand, G(z—az4, h) = C(h) for zeV, cf. (10.13) and
(10.6).

The value C(h) of the function G at the point z°¢ 8V divided by
|«® — 4|2 approaches zero as h — 0. Indeed, we have (cf. (10.4) and (12 3))
|#® —x4|* > h*. Hence (cf. (10.6))

C(h) C(h)
(13.9) P < 22 -0, ash—0,
since
haa h1+a
e = h* -0, —h = h'7% - o,
(13.10)
h2

= B9 50, as h—0.

h2a
In the set R"\V we have (cf. (10.13)):

G(@—ax4, h) = z AT a:“l” -C(h).
This and (13.9) imply that
(13.11) | Gxz—a4,h) -0, as h—>0,

the convergence being uniform with respect to # in every closed and
bounded set, e.g. in the set Q,.
In particular, (13.11) and (13.8) yield

(13.12) G(s*-a,, h) >0, as h—>0,.
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From (13.12) and definition (10.16) of E(h) follows (13.6)."
This implies that there exists an h, > 0 sufficiently small for g(k,)
in formula (11.2), (11.3) to satisfy the inequality

(13.13) g(h,)< I'y for h, sufficiently small.
Hence, from (13.13) and (11.2) it follows that
(13.14) w4 < Iy for h, sufficiently small,

which contradicts assumption (13.4).
This ends the proof of Theorem 2.

14. THEOREM 3. Let us suppose that the function u™ satisfies Assump-
tions H, inequality (4.3) being replaced by the inequality

n n
(14.1) Nadf i+ 3 pM M p MM e,
j=1

,7=1
where 0 << e = ¢(h) >0, as h — 0.
Let us write
(14.2) u? = minu™, B = B(h).
::MeQ
Under these assumptions we have
(14.3) uP® -0, as h—0.

Theorem 3 can be proved in the same manner as Theorem 2. It is
sufficient to repeat the argument with the minimum value (14.2), the
sense of the corresponding inequalities being reversed.

Regu par la Rédaction le 14. 5. 1970



