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An optimal solution of Nicoletti’s
boundary value problem

by A. Lasora and C. OrecH (Krakéw)

Introduction. In the present note we are concerned with a system
of ordinary differential equations

(0.1) x=fity @y, ey n), t=1,..,7,
and the boundary value problem
(0.2) 2(ls) =1, 0LK<U<h, t=1,..,n.
Without any loss of generality we assume in the sequel that
(0.3) 0Kt < . K<th < h.
Problem (0.1)-(0.2) can be written shortly in vector notation as
(0.4) o =ft,z), Nox=r,

where z = (@1, ..., %n)y | = (f1y ooy fu)y ¥ = (#1y +o., ™) and N is the linear
operator of Oz into R™ defined by Vo = (y(3,), ..., #a(ts)), where Clon,
is the space of m-vector valued continuous functions defined on <0,h)
and R" is the n-dimentional Euclidean space.

Problem (0.4) was posed by O. Nicoletti ([3]) in 1897 and he gave
a solution to the problem using the method of successive approximations.
Since that time a considerable attention has been paid in the literature
to problem (0.4). Let us mention only three more recent papers by
R. Conti [1]. M. Svec [6] and by V. P. Skripnik [5]. In Conti’s paper [1]
the reader can find an extensive list of references concerning this and
related boundary value problems for system (0.1).

Our aim is to present two results concerning the uniqueness and
the existence of solution of problem (0.4). The sufficient conditions we
are giving are the best possible in a certain class of the right-hand sides
of the system. _

Throughout the paper we assume for / (i, z), in (0.4), the Carathéodory
conditions; that is we assume f(t, #) to be defined for ¢ ¢ (0, k) and z ¢ R",
continuous in 2 for each ¢ € <0, h) and Lebesgue measurable in ¢ for each
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z ¢ R". By a solution of (0.1) we mean any absolutely continuous function
x(t) defined on the interval <0,h> and satisfying (0.1) almost every-
where on <0, k).

THEOREM 1. Suppose function f(t,x) of <0,h)yx R" into R" satisfies
the inequality
(0.5) 1£(t, w)—f(t, o) < p(Blu—v|  for each u,v e R",

where | | stands for the Euclidean norm in B and p (1) is Lebesgue integrable
on <0, k) and such that

h
(0.6) [pwat<=2.
0

Then a solution of (0.4), if exists, ts unique for any 0 <l < h and
any 7.

THEOREM 2. Suppose f(t, z), in (0.4), satisfies the Carathéodory con-
ditions and the inequality

(0.7) ft, o)l <p@)lwl+g(t, @) for te<0,h), @eR",

where p(t) is Lebesque integrable function satisfying condition (0.6) and
g(t, ) is a function of {0, h) X R" satisfying Carathéodory conditions and
the following assumption

(0.8) lim ; j sup g(¢, @)dt = 0 .
k lz|<%

Under these assumplions problem (0.4) has at least one solution for
each t € {0, hd, 1 =1,...,n, and each » ¢ R".

From Theorems 1 and 2 follows the following

CorOoLLARY 1. If function f(t,x) satisfies Carathéodory conditions,
inequalities (0.5) and (0.6) hold and f(t, 0) is Lebesgue integrable over <0, h)
then there ewists a solution of problem (0.4) and is unique.

Proofs of Theorem 1 and Theorem 2 are given in Section 3 and 4,
respectively. Theorem 1 is a consequence of Theorem 3, given in Section 2,
concerning a differential inequality. Section 1 contains a lemma which
we need to prove Theorem 3. This lemma admits as a special case the
following simple but worthwhile noticing purely geometrical statement.

Letp; = (Pi1y ooy Pin)y © = 1, ..., m,y be n given points on the unit sphere 8

n—1

of the Buclidean n-space R". If py =0 fori=1, ...,n, then 29 (P1y Pira)

= n/2, where o(x,y) if ©,y S stands for the lemqth of the (shorter) great
circle’s arc joining @ and y.

As the reader will notice, the proof of the lemma is reduced to a proof
of the above statement.
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Theorem 2 is a consequence of Theorem 3 and a general result of [2]
due to the first of the authors. For convenience of the reader this result
is stated in Section 4. Finally Section 5 contains some concluding remarks.
There we give an example showing that if ‘< in (0.6) is replaced by “<”
then both Theorems 1 and 2 fail to hold true. This example proves that
for the class of right-hand members f(¢, ) of (0.1) satisfying (0.5} (or (0.7)
and (0.8)) the condition (0.6) is the best possible for the uniqueness (or
the existence) of solution of (0.4).

1. A lemma. Let z,y ¢ R"; by (z, y) we denote the scalar product
of # and y. Then |z = (z,2)¥* is the Euclidean norm of z. Denote
S = {weR": |z|=-1}.

LeMmA. Suppose an adsolutely continuous function ¢ of <0, 1) tnio S
is gien. Assume there is a sequence 0 <1, < ... < 1y < h such that

(1.1) pit)) =0, ¢=1,..,n,

where @i, © =1, ..., n, are coordinates of ¢. Then

in
(1.2) ‘f l9'(0)] dt > mj2 .

Proof. Set pi = (pary ooy Pin) = @(ts), 1 =1, ..., n. We have by (1.1)
(1.3) pu=0 for ¢=1,..,n.

Since |p¢ =1 for 4 =1, ..., n, therefore it follows from (1.3) that p: 7 p;
at least for one pair 4,4, ¢ # §, and in consequence t, < t,. Let z, y € S.
We set

b
(14) o(z,y) = int [ [pi)iar,
a
where the infimum is taken over all absolutely continuous v of <a, b)

into 8 such that y(a) = @ and p(b) = y. Since the integral in (1.4) is the
length of an arc on S counnecting & and y, it is easy to see that

(1.5) o(z,y) = arccos<(z, ¥)>
and that
(1.6) olz,y) < o(x,2)+ o(2,y) for any z, Y,2€8.

By (1.4) and (1.5) we have

{n n-—1 n—1
@7 [ mld = D) e, i) = D, arecos{(pi, pira)) -
iy =1 =1

g*
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Hence to show (1.2) it is enough to prove that

n—1

(1.8) Dot pest) = 2.

{=1

For the proof of inequality (1.8) we will show the existence of an integer
k <n and a sequence ¢i = (@i, ...y Qin)y ¢ =1, ..., k, such that

(i) lgsl=1 and qy=0 for j<i,s=1,..,k%,
i
(i) 0@, Dist) < O 0(Dsypren)  for i=1,..,%,
FEDS
(1) o(Qey Prt) > /2 .

If such integer & and sequence ¢s exist then (1.8) is an obvious con-
sequence of (iii) and (ii) for ¢ = k. Therefore to complete the proof of
the Lemma, we need to prove the existence of k& and ¢ satistying (i)-(iii).
For this purpose we shall use the induction argument. We take ¢, = p,.
Then (i) and (ii) are satisfied for ¢ =1. If (p,, pa) = (41, P2) < 0 then
by (1.5) also (iii) holds for ¥ =1 and we are done. Suppose then that
(p1y Pa) > 0 and suppose we have defined ¢; for ¢ =1, ..., m such that (i)
and (ii) hold for =1, ..,m and

(1.9) (@, pis)>0 for i=1,..,m,

where m > 1. Note that m < n—1. Indeed if m = n—1 then by (i) for
1 =n—1 and (1.3) (¢s-1, Pn) = 0 which contradics (1.9). Let s = (sy, ..., $n)
and put & =0 for i=1,..,m4+1 and $; = @m: for i =m+2,..,0.
We have by (i) for ¢ = m that [$| < |¢gm| =1 and by (1.3) and (1.9) that

(1.10) (83 Pm+1) = (gmy Pm+1) > 0

which implies that [s]| > 0, hence 0 < |s|<1. We put @msr = s/ls|.
Clearly (i) is satisfied for 4 = m+4-1., By (1.10) we get the inequality
(@m+1y Pm+1) = (4my Pm+1), therefore by (1.5)

(1.11) o(dm+1y Pm1) < @(qm; Pms1) -
By (1.11), (1.6) and (ii) for ¢ = m we have

m+1
0(Im+1y Pm+2) < 0(Im;s Pms1) + 0 (Dms1,Pmys) < Z o(ps; Pr+1) -

fml
Hence (ii) also holds for ¢ = m-1. Now either (gm+1; Pmsz) <0 then
k = m—+1 and we are done or (1.9) holds for ¢ = m-+1 and we can define
@m+z- It 18 clear that either there is k¥ < #—1 such that (iii) holds or ¢
satisfying (i) and (ii) can be defined fori =1, ..., n—1. In the last case,
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as we already noticed, (gn-1,ps) must be equal zero. Thus o(gu—1,n)
= 7/2 hence (iii) holds for ¥ = n—1. Therefore we proved the existence
of ¥ and ¢i, 4 =1, ..., k, such that (i)-(iii) hold, which completes the
proof of the Lemma.

Remark. Let us observe that the equality in (1.2) can hold only if

n—1 7%

0(D1, Pn) = 2 o(piyPis1) = =/2 and f lp’(8)| 4t = @ (D1, Pis1)

=1 [7;

for 1 =1,..,n—1. This is the case if
@(t) = p,cosP(t)+ pgsinP(t) ,

¢
where P(t) = [ [¢'($)|d, [ps| = Ipal =1 and (ps, pn) = 0.
0

2. A differential inequality. Theorem 1 stated in the Intro-
duction is a consequence of the following result.

THEOREM 3. Suppose the function p of {O0,h) into R 4s Lebesgue

integrable and mnonnegative. Consider the differantial inequality for an
n-vector valued function

(2.1) @ <p®le@®)], 0<i<h,
and the homogeneous condition corresponding to (0.2); that is
(2.2) zi(t) =0, 0<t<h, i=1,..

If p(t), in (2.1), satisfies the inequalily;
h
(2.3) [ p@)yat < =j2
0

then x(t) = 0 is the only one absolutely continuous function of <0, h) into R™
which satisfies condition (2.2) and inequality (2.1) almost everywhere in
<0, k).

Proof. Let us note first that if an absolutely continuous function
z(t) satisfies (2.1) and |2(0)| # 0 then |z(t)| 7= 0 for each ¢ € <0, h). There-
fore any absolutely continuous solution of (2.1) and (2.2) is either trivial
(2(t) = 0) or |z(t)] # 0 for each e <0, k). Suppose there exists a non-
trivial solution «(t) of (2.1) satisfying (2.2). Put ¢(t) = #(2)/|z(t)|, then ¢
is a map of <0, ) into § and it satisfies assumption (1.1) of the Lemma
since x(f) satisfies (2.2). Hence owing to the Lemma

h tn
(24) [z [ wwla= 2.
0

i1,
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On the other hand we have
2'(t) o)), 2®)| (lOP (@), 2®))"
PO =G~ woP =(Im(t)l” T @R ) '
0 < [/ (DR [m(5)P—~ (2'(2), 2(1))* < j&' (Dl (@)
Therefore by (2.1)
(2.5) @' ()} <

But

|2’ (?)]
| (t)]
Integrating (2.5) over the interval <0, ) and making use of (2.3), we

obtain a contradiction with (2.4). Hence there cannot exist a non-trivial
solution of (2.1) and (2.2), which finishes the proof of Theorem 3.

<p().

3. Proof of Theorem 1. Suppose Z(¢) and Z(f) are two absolutely
continuous solutions of problem (0.4). Then (i) = Z(t)—=z(t) satisties
the homogeneous condifion (2.2) and by (0.5) inequality (2.1) holds, too.
Since assumption (0.6) of Theorem 1 is the same as (2.3) in Theorem 3,
therefore by Theorem 3 z(!) = 0, which proves Theorem 1.

4. Proof of Theorem 2. The proof of Theorem 2 is based on
a result concerning homogeneous contingent equations. This result will
be now stated.

Denote by cf(R") the metric space of all closed and convex subsets
of R", where the metric function is given by the Hausdorff distance of
two sefs; that is by the function

d(4,B) = ma,x(sugna(a:,A), supé(z, B)), A,Bect(R")),
z€ TeAd

where §(z, A) denotes the Euclidean distance of point z from set 4.

The metric d and Lebesgue meagure on <0, k) allow to introduce
the class of Lebesgue measurable maps of <0, k) into cf(R"). Here we
adopt the following convienient definition due to A. Pli§ ([4]). We say
that a map F(t) of €0, k) into cf(R") is Lebesgue measurable if for each
closed A C R" the set {t: A ~ F(t) # @} is Lebesgue measurable.

Let F(t, ) be a map of <0, k) x R" into cf(R"), f(¢,2) a map of
€0, k) x R" into R" and L(x) a map of (%, into R™. Councerning F, f
and L let us suppose the following assumptions.

(i) Assume F'(I,») satisfies the Carathéodory conditions; that is F
is measurable in ¢ for each z ¢ R” and continuous in 2 for each & e <0, b>.
Assume F'(Z, x) is homogeneous in «; that is F (¢, Az) = AF(t, ) for each
real 4, and finally suppose there is Lebesgue integrable real function
@(t)y, t€ (0, h) such that for each fixed ¢

|yl <@(t) for each ye |J F(t,2).

|| =1
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(i) The map f(t,z) satisties the Carathéodory conditions and is
such that

h
.1
4.1 = =
(4.1) llcl_gnakofIg}gé(j(t,m),ﬁ‘(t,m))dt 0.

(ii) The map L(x) is continuous and homogeneous; that is L(Ax)
= AL(wx) for each real A, where the topology in C%.» is given by the uni-
form convergence.

Consider a contingent equation; that is the condition

(4.2) o' eF(t, ),

where F'(¢, x) is a map of <0, h) x R™ into cf(R"). By a solution of (4£.2)
we mean any absolutely continuous function of an interval, say <0, k),
into R" which satisfies (4.2) almost everywhere.

The following theorem is due to A. Lasota ([2]).

THEOREM 4. Assume F, f and L satisfy assumptions (i), (ii) end (iii),
respectively.

If x(t) =0 is the only one solution of (4.2) defined on <0, kD>, which
satisfies the homogeneous boundary value condition

L(x) =0,
then the boundary value problem
@ =f@t,z), Lw)=r

has at least one solution for each r ¢ R".
Let us go back now to the proof of Theorem 2. Let us set

(4.3) Ft, o) = {y: lyl<p(t)|z]}.

For each ¢, x, F(t, x) is a closed n-ball of center 0 and diameter p (?) |2|.
Therefore it is clear that F(t, z) € cf(R"™), is homogeneous and continuous
in z for each ¢. If A C R" is closed then for each fixed z# we have

{#: P(t,0) n A D} = {t: p(t)|o] > (0, 4)} .

Hence F(1, ) is Lebesgue measurable in {. Now the last part of (i) is
satisfied by I given by (4.3) with @(t) = p(¢), since p(#) is assumed to
be Lebesgue measurable. Hence condition (i) holds.

Condition (ii) for f(¢, ), in (0.4), is assumed in Theorem 2. Note
that, if ¥ is given by (4.3), by (0.7) we have 6(f(t,m),F(t, a:)) < g(t, ).
Therefore (4.1) holds because of (0.8) assumed in Theorem 2.

Finally, condition (iii) is satisfied for L(2) = Na (cf. (0.4)) since N
is linear. Since assumption (2.3) is satisfied by p (f) in Theorem 2, therefore
by Theorem 3 «(t) = 0 is unique solution of (4.2), with F' given by (4.3),
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which satisfies (2.2); that is the homogeneous condition No = 0. Hence
by Theorem 4 we conclude that problem (0.4) has at least one solution
for each r ¢ R", which was to be proved.

5. Concluding remarks. As we have mentioned in Introduction
our results (Theorems 1 and 2) are best possible for the class of right-hand
sides of (0.1) satisfying inequality. (0.5) (or (0.7) with condition (0.8))
with p(1) and h being fized. More precisely, if we fix & and p(?) >0
such that

L
(5.1) [ p@dt = =2
0

then there are i1 € (0, h), ¢ =1, ..., n, and f(¢, ) satisfying (0.5) (or (0.7)
and (0.8)) such that there are at least two different solutions of
problem (0.4) (or there does not exist any solution of (0.4)) for some
r ¢ R*. This is shown by the following example.

Consider system (0.1) with fi«(¢, @) given by

(5.2) Aty @) =—pMzy, flt,2)=pWOxn, fi(t,2)=0 for i>2.

It is obvious that f(t, ) defined by (5.2) satisfies (0.5) (or (0.7) with
g(t, z) = 0). It is easy to check that

2,(t) = ¢,c08.P(t)— ¢ysin P () ,
(5.3) Z,(t) = ¢;8in P () + ¢yco8 P(2)

zt)=¢1, +=3,..,n,

t
where P(1) = f p(z)dr and ¢; are constants, is the general solution of (0.1)
0

when f(t, z) is given by (5.2).
Consider now the boundary value condition

(54) 20)=a, wmh)=x(ts)=0, O0<h<h,t=3,..,7,

If a = 0 then becaunse of (5.1) solution (5.3) satisfies (5.4) if ¢, = ¢,
= ... = ¢p = 0 and ¢, arbitrary. Hence a solution of the system satisfying
(5.4) is not unique. If a % 0 then there is no solution of the system
satisfying (5.4). Indeed, since #,(0) 5% 0 thus by (5.3) ¢, must be different.
from zero. Therefore by (5.1) and (5.3) we get that zy(h) = ¢, # 0 and
(5.4) cannot be satisfied.

Note that the example we gave is essentially two-dimensional. The
first two equations of the system make the example working and the
remaining are only for a decoration. It is also clear that as fg, ..., f» We
could take as well arbitrary functions but homogeneous and such that (0.5)
or (0.7) would be satisfied. On the other hand, as follows from the Remark
of Section 1, if we replace ‘< in (2.3) by “< then a non-trivial solution
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x(t) of (2.1) satisfying the homogeneous condition (2.2) must be two-
dimensional in the sense that there is a two-dimensional subspace of R"
containing x(?) for te <0, h).

In the formulation of Theorem 1 and 2 we gave the condition (0.6)
concerns the integral of p(t) over the interval <0, A) and because of that
our results are valid for any #;e<0,h), ¢ =1,...,% It is clear that if
we fix ¢ in (0.2) or (0.4) then what we really need for the validity of
Theorem 1 and 2 is the inequality

B
[pwadt < =2,

where a = mint; and g = maxt;.
i i
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