METRIZABILITY AND WEIGHT OF INVERSES UNDER CONFLUENT MAPPINGS

BY

R. ENGELKING AND A. LELEK (Warszawa)

We say that a mapping \(f : X \to Y \) of a topological space \(X \) onto a topological space \(Y \) is confluent provided for every connected closed subset \(C \) of \(Y \), and points \(x \in f^{-1}(C) \) and \(y \in C \), the set \(f^{-1}(C) \) is connected between \(\{x\} \) and \(f^{-1}(y) \), i.e. every open-and-closed neighbourhood of \(x \) in \(f^{-1}(C) \) meets \(f^{-1}(y) \). This notion was introduced in [4]. We say that a mapping \(f : X \to Y \) is locally confluent provided every point \(y \in Y \) has a neighbourhood \(V_y \) in \(Y \) such that \(f|f^{-1}(V_y) \) is confluent. A routine argument shows that the class of confluent mappings contains all mappings which are either open-and-closed, or monotone and closed, or monotone and open. Thus within the class of continuous mappings of compact Hausdorff spaces, confluent mappings constitute a common generalization for monotone mappings and open mappings. In the theory of compact Hausdorff spaces an important role is played also by 0-dimensional mappings, i.e. those having 0-dimensional inverses of points. A counterpart to 0-dimensional mappings, suitable for the non-compact case, can be defined as follows. We say that a mapping \(f : X \to Y \) is separative provided for every point \(x \in X \) and its neighbourhood \(U \) in \(X \) there exists a neighbourhood \(V \) of \(f(x) \) in \(Y \) such that the set \(f^{-1}(V) \) is not connected between \(\{x\} \) and \(f^{-1}(V) \setminus U \), i.e. there is an open-and-closed neighbourhood of \(x \) in \(f^{-1}(V) \) which is contained in \(U \). The concept of separative mappings is due to Zarelua [10]. A continuous mapping of a locally compact Hausdorff space is separative if and only if it is 0-dimensional.

The problem of estimating the weight of inverses under 0-dimensional mappings has been investigated by Mardesić [5]. More precisely, his theorem says that if \(f : X \to Y \) is a 0-dimensional continuous mapping of a locally connected compact Hausdorff space \(X \) onto a Hausdorff (infinite) space \(Y \), then \(w(X) = w(Y) \). An analogue of this theorem for non-compact spaces, involving separative mappings, has been given by Proizvolov [6]. In the present paper we prove that a similar estimation of weights is possible under the assumption that the space \(Y \) is locally
connected in lieu of the much stronger assumption that its inverse X
is locally connected. Then, however, it is necessary to assume some additional
conditions concerning the function f, and we have done this by assuming,
among other things, that f is locally confluent (see Theorem 1).

The problem of metrizing inverses of metrizable spaces has been raised
by Proizvolov [7] who asked whether or not a compact Hausdorff space
must be metrizable if it admits an open continuous mapping onto a metrizable
space such that all inverses of points are metrizable (see also [1],
p. 170, Problem 5.5). A negative solution of this problem has been given
by Veličko [8] who constructed a non-metrizable compact Hausdorff
space X and an open continuous mapping of X onto the unit segment I
such that all inverses of points are homeomorphic to I. What we propose
is a positive solution of the Proizvolov problem in a special case: the
mapping is assumed to be separative and the image is assumed to possess
a σ-locally finite base consisting of connected sets (see Theorem 2).

We start with an example of a countable-to-one open continuous
mapping of a non-metrizable compact Hausdorff space onto a metrizable
space. In this way we replace the monotoneity of the function achieved
in [8] by the requirement that all inverses of points are countable. The
notation and the terminology come from [2]. Let Q denote the Cantor
quinary set, i.e. the set of all real numbers t such that

$$
t = \sum_{i=1}^{\infty} \frac{t_i}{5^i},
$$

where $t_i = 0$ or 4 for $i = 1, 2, \ldots$ We provide Q with the natural topology
inherited from the real line. Actually, in our example just the space Q
will be an open image of a non-metrizable compact Hausdorff space,
and a special feature of the Cantor quinary set will be exploited: we have
$t \neq u \pm 2/5^i$ for $t, u \in Q$ and $i = 1, 2, \ldots$ It follows that no point $(t, 2/5^i)$
lies on the line $x = u \pm y$ for any pair of points $t, u \in Q$.

Example. Let D be the Cantor set Q equipped with the discrete
topology and let $i : D \rightarrow Q$ be the identity mapping. There exist a compact
Hausdorff space D^* containing D as a subspace and an open continuous
extension $i^* : D^* \rightarrow Q$ of i over D^* such that D^* satisfies the first axiom
of countability and $i^*^{-1}(q) \setminus D$ is a countable discrete subspace for $q \in Q$.
Given real numbers x_0 and y_0, we denote by $A(x_0), B_i(x_0, y_0), C(y_0)$
the plane sets

$$
A(x_0) = \{(x, y) : x_0 - y \leq x \leq x_0 + y\},
$$

$$
B_i(x_0, y_0) = \{(x, y) : (x - x_0)^2 + (y - y_0)^2 < 1/4^i\},
$$

$$
C(y_0) = \{(x, y_0) : x \in Q\},
$$
for $i = 1, 2, \ldots$ We put

$$D^* = C(0) \cup C(1) \cup \bigcup_{i=1}^{\infty} C \left(\frac{2}{5^i} \right)$$

and determine the topology in D^* be generated by a neighbourhood system $\{B(p)\}$ which is defined as follows. Let $p = (x_0, y_0) \in D^*$; we distinguish three cases.

Case 1: $p \in C(0)$. Then we define

$$B(p) = \{ A(x_0) \cap B_i(x_0, 0) \cap D^* \}_{i=1}^{\infty}.$$

Case 2: $p \in C(1)$. Then we define

$$B(p) = \{ [B_i(x_0, 1) \cup [B_i(x_0, 0) \setminus A(x_0)] \cap D^* \}_{i=1}^{\infty}.$$

Case 3: $p \in D^* \setminus C(0) \setminus C(1)$. Then

$$B(p) = \{ B_i(x_0, y_0) \cap D^* \}_{i=1}^{\infty}.$$

It is easily seen that D^* with this topology is a Hausdorff space. Moreover, the subspace $C(0)$ is \mathbb{Q} with the discrete topology, i.e. it coincides with D. To see that D^* is compact, let us observe that the subspace $C(1)$ is \mathbb{Q} with the natural topology, thus it is compact. Since elements of $B(p)$ do not meet $C(1)$ for $p \notin C(1)$, every collection covering the space D^* and consisting of sets from our neighbourhood system contains a finite subcollection covering the whole set $C(1)$ and also the set $C(0)$ except for a finite number of points. We only have to adjoin some neighbourhoods of these points in order to obtain a finite subcollection of sets whose union U contains $C(0) \cup C(1)$. But then the subspace $D^* \setminus U$ is compact which yields the compactness of D^*.

The mapping $i^*: D^* \to \mathbb{Q}$ is now defined by the formula

$$i^*(x, y) = x$$

for $(x, y) \in D^*$. Clearly, i^* is continuous and open. If $q \in Q$, the set $i^{-1}(q)$ consists of a countable number of points which converge to $(q, 0) \in D$.

Remarks. It seems to be worth noticing that our space D^* contains a countable dense subset, and that the subspace $D^* \setminus C(1)$ is very much like the Niemytzezki plane (see [2], p. 34, Example 2). On the other hand, the subspace $C(0) \cup C(1)$ is the "double Cantor set" (see [3], p. 629; see also [2], p. 109, Exercise E). The subspace D being uncountable and discrete, the space D^* is non-metrizable. Nevertheless D^* is transformed onto the Cantor set Q via the open continuous mapping i^* under which the inverses of points are countable, and thus they all are metrizable. By a result of Proizvolov [7], the inverses of points under such a mapping cannot be finite. Taking a standard extension of i^* over the cones built
up over D^* and Q, we obtain a countable-to-one open continuous mapping of a non-metrizable continuum onto a metrizable continuum. The latter continuum is not locally connected, and this is essential here (see Corollary 3.3).

Lemma. Let $f: X \to Y$ be a separative continuous mapping of a topological space X onto a regular space Y and let $\{G_s\}_{s \in S}$ be a base in Y. If $F_s \subseteq Y$ is a set such that $G_s \subseteq F_s \subseteq \tilde{G}_s$ and \tilde{G}_s denotes the collection of all open-and-closed non-void subsets of the subspace $f^{-1}(F_s)$ for $s \in S$, then the collection \mathcal{B} defined by the formula

$$\mathcal{B} = \bigcup_{s \in S} \{\text{Int} Q : Q \in \tilde{G}_s\}$$

is a base in X.

Proof. Suppose $U \subseteq X$ is an open set and $x \in U$. Since f is separative, there exist a neighbourhood V of $f(x)$ in Y and an open-and-closed neighbourhood P of x in $f^{-1}(V)$ such that $P \subseteq U$. Since Y is regular, there exists a neighbourhood V_0 of $f(x)$ in Y such that $V_0 \subseteq V$. Then there exists an index $s_0 \in S$ satisfying $f(x) \in G_{s_0} \subseteq V_0$. Thus $F_{s_0} \subseteq V$ whence $f^{-1}(F_{s_0}) \subseteq f^{-1}(V)$ and the set $Q = P \cap f^{-1}(F_{s_0})$ is open-and-closed in $f^{-1}(F_{s_0})$. But the sets $f^{-1}(F_{s_0})$ and $f^{-1}(V)$ are neighbourhoods of x in X, and so are the sets P and Q. Consequently, we have $Q \in \tilde{G}_{s_0}$ and $Q \subseteq P \subseteq U$, whence $x \in \text{Int} Q \in \mathcal{B}$ and $\text{Int} Q \subseteq U$.

Theorem 1. Let $f: X \to Y$ be a separative locally confluent continuous mapping of a topological space X onto a locally connected regular space Y. If $w(Y) \leq m$ (where $\aleph_0 \leq m$) and there exists a dense subset $A \subseteq Y$ such that $f^{-1}(y)$ is a compact Hausdorff subspace with the weight $w[f^{-1}(y)] \leq m$ for $y \in A$, then $w(X) \leq m$.

Proof. For any point $y \in Y$, let us denote by V_y a neighbourhood of y in Y such that $f|f^{-1}(V_y)$ is confluent. Since Y is locally connected and the weight of Y does not exceed m, there exists a base $\{G_s\}_{s \in S}$ in Y such that $S \subseteq m$ and the set G_s is connected and contained in a set V_{y_s} for $s \in S$. Let F_s be the closure of G_s in V_{y_s}. Thus $f|f^{-1}(F_s)$ is confluent $(s \in S)$ and it suffices to show that the base \mathcal{B} described in the lemma above has the cardinality $\mathfrak{b} \leq m$. Since m is infinite, it is enough to verify the inequality $\mathfrak{b} \leq m$ for $s \in S$.

In fact, let us choose a point $x_s \in A \cap G_s$. Thus $x_s \in F_s$ and since $f|f^{-1}(F_s)$ is confluent, every set belonging to \tilde{G}_s meets $f^{-1}(x_s)$. If $Q, Q' \in \tilde{G}_s$ and $Q \cap Q' \neq \emptyset$, then $Q \cap Q' \in \tilde{G}_s$, whence $Q \cap Q'$ meets $f^{-1}(x_s)$. It follows that if we assign to each set $Q \in \tilde{G}_s$ the intersection $Q \cap f^{-1}(x_s)$, we get a one-to-one correspondence between the sets from \tilde{G}_s and some open-and-closed subsets of the subspace $f^{-1}(x_s)$. But the space $f^{-1}(x_s)$ being compact Hausdorff,
the collection of all open-and-closed subsets of $f^{-1}(a_i)$ has the cardinality not greater than $w[f^{-1}(a_i)]$. Since $a_i \in A$, we conclude that $\overline{\omega}_s \leq m$, and the proof of Theorem 1 is complete.

Remarks. In this proof, we have utilized the compactness of $f^{-1}(Y)$ for $y \in A$ only when estimating how many open-and-closed subsets are in $f^{-1}(Y)$. Instead of compactness of $f^{-1}(Y)$ we could as well assume a weaker condition: namely that $f^{-1}(Y)$ is completely regular and the space of quasi-components of $f^{-1}(Y)$ is compact for $y \in A$ (see [9], p. 49). We check briefly the necessity of some other conditions in Theorem 1: the example of the mapping constructed in [8] shows the condition saying that f is separative cannot be omitted. The projection of the “double segment” (see [2], p. 107, Example 2) onto I shows the necessity of the condition saying that f is locally confluent. The mapping $i*$ in our example above applies to argue that Y must be assumed to be locally connected. Also, the inequality for the weight of $f^{-1}(Y)$ cannot be omitted in Theorem 1 as it is shown by projection of $\omega D \times I$ onto I, where ωD stands for the Alexandroff compactification of a discrete uncountable space D.

Corollary 1.1. Let $f: X \to Y$ be a separative open-and-closed continuous mapping of a topological space X onto a locally connected regular space Y. If $w(Y) \leq m$ (where $\omega_0 \leq m$) and there exists a dense subset $A \subset Y$ such that $f^{-1}(y)$ is a compact Hausdorff subspace with $w[f^{-1}(y)] \leq m$ for $y \in A$, then $w(X) \leq m$.

Corollary 1.2. Let $f: X \to Y$ be a 0-dimensional open perfect mapping of a Hausdorff space X onto a locally connected space Y. If $w(Y) \leq m$ (where $\omega_0 \leq m$) and there exists a dense subset $A \subset Y$ such that $w[f^{-1}(y)] \leq m$ for $y \in A$, then $w(X) \leq m$.

Corollary 1.3. Let $f: X \to Y$ be a 0-dimensional open continuous mapping of a compact Hausdorff space X onto a locally connected Hausdorff (infinite) space Y. If there exists a dense subset $A \subset Y$ such that $f^{-1}(y)$ is metrizable for $y \in A$, then $w(X) = w(Y)$.

Theorem 2. Let $f: X \to Y$ be a separative locally confluent continuous mapping of a regular space X onto a regular space Y. If Y admits a σ-locally finite base consisting of connected sets and there exists a dense subset $A \subset Y$ such that $f^{-1}(y)$ is a metrizable compact subspace for $y \in A$, then X is metrizable.

Proof. For $y \in Y$, let V_y be a neighbourhood of y in Y such that $f|f^{-1}(V_y)$ is confluent. Let $\{G_{si}\}_{s \in S_i}$ be a locally finite family of connected sets $G_{si} \subset Y$ ($i = 1, 2, \ldots$) such that the collection $\{G_{si}: s \in S_i, i = 1, 2, \ldots\}$ is a base in Y. We can assume that each set G_{si} is contained in a set $V_{v_{si}}$ for $s \in S_i$. Let F_{si} be the closure of G_{si} in $V_{v_{si}}$, and let \bar{G}_{si} be the collection of all open-and-closed non-void subsets of the subspace $f^{-1}(F_{si})$, for $s \in S_i$ and $i = 1, 2, \ldots$ Since $f^{-1}(y)$ is metrizable compact for $y \in A$, we have
$w[f^{-1}(y)] \leq \aleph_0$ for $y \in A$. It now follows exactly in the same way as in the proof of Theorem 1 that $\overline{\mathcal{B}_{S_i}} \leq \aleph_0$ for $s \in S_i$ and $i = 1, 2, \ldots$ Thus we can write

$$\mathcal{B}_{S_i} = \{Q_{s_{i1}}, Q_{s_{i2}}, \ldots\},$$

and, according to the Lemma, the collection \mathcal{B} defined by the formula

$$\mathcal{B} = \bigcup_{i=1}^{\infty} \bigcup_{j=1}^{\infty} \{\text{Int}Q_{s_{ij}}: s \in S_i\}$$

is a base in X. Since each family $\{G_{s_i}\}_{s \in S_i}$ is locally finite in X, so is $\{F_{s_i}\}_{s \in S_i}$. Hence each family $\{f^{-1}(F_{s_i})\}_{s \in S_i}$ is locally finite in X. But we have

$$\text{Int}Q_{s_{ij}} \subset Q_{s_{ij}} \subset f^{-1}(F_{s_i})$$

for $s \in S_i$ and $i, j = 1, 2, \ldots$ Consequently, the base \mathcal{B} is σ-locally finite. This yields the metrizability of X (see [2], p. 196), and the proof of Theorem 2 is complete.

Remarks. Like in our remarks to Theorem 1, let us observe that instead of metrizability and compactness of $f^{-1}(y)$ in Theorem 2 we could assume only that $f^{-1}(y)$ is completely regular with $w[f^{-1}(y)] \leq \aleph_0$ and that the space of quasi-components of $f^{-1}(y)$ is compact for $y \in A$. Also, the same four examples mentioned in the remarks to Theorem 1 apply here to show that each of the corresponding four conditions is essential in Theorem 2. Finally, let us point out that analogues of Corollaries 1.1-1.3 can easily be formulated as consequences of Theorem 2.

Theorem 3. Let X be a metrizable space. If X is locally connected and locally separable, then X admits a σ-locally finite base consisting of connected sets.

Proof. Since X is metrizable, X admits a σ-locally finite base. Let $\{G_{s_i}\}_{s \in S_i}$ be a locally finite family of sets $G_{s_i} \subset X$ ($i = 1, 2, \ldots$) such that the collection $\{G_{s_i}: s \in S_i, i = 1, 2, \ldots\}$ is a base in X. We can assume that each set G_{s_i} is contained in a separable subspace of X. Then the collection of components of G_{s_i} is countable; and let $C_{s_{i1}}, C_{s_{i2}}, \ldots$ be all components of G_{s_i}. Hence

$$\mathcal{B} = \bigcup_{i=1}^{\infty} \bigcup_{j=1}^{\infty} \{C_{s_{ij}}: s \in S_i\}$$

is also a base in X, and it follows from the inclusion $C_{s_{ij}} \subset G_{s_i}$ that the family $\{C_{s_{ij}}\}_{s \in S_i}$ is locally finite in X. Thus \mathcal{B} is σ-locally finite and the elements of \mathcal{B} are connected.

Corollary 3.1. Let $f: X \to Y$ be a separative locally confluent continuous mapping of a regular space X onto a metrizable locally connected locally separable space Y. If there exists a dense subset $A \subset Y$ such that $f^{-1}(y)$ is a metrizable compact subspace for $y \in A$, then X is metrizable.
COROLLARY 3.2. Let \(f: X \to Y \) be a separative open-and-closed continuous mapping of a regular space \(X \) onto a metrizable locally connected locally separable space \(Y \). If there exists a dense subset \(A \subseteq Y \) such that \(f^{-1}(y) \) is a metrizable compact subspace for \(y \in A \), then \(X \) is metrizable.

COROLLARY 3.3. Let \(f: X \to Y \) be a 0-dimensional open perfect mapping of a Hausdorff space \(X \) onto a metrizable locally connected space \(Y \). If there exists a dense subset \(A \subseteq Y \) such that \(f^{-1}(y) \) is metrizable for \(y \in A \), then \(X \) is metrizable.

THEOREM 4. Let \(X \) be a metrizable space. If \(X \) is locally connected and \(X \) has a countable closed covering whose elements admit \(\sigma \)-locally finite bases consisting of connected sets, then \(X \) admits a \(\sigma \)-locally finite base consisting of connected sets.

Proof. Let \(\{C_i\}_{i=1}^\infty \) denote this countable closed covering of \(X \), and let \(\{G_{sij}\}_{s \in S_{ij}} \) be a locally finite family of connected sets \(G_{sij} \subseteq C_i \) \((j = 1, 2, \ldots)\) such that the collection \(\{G_{sij}: s \in S_{ij}, j = 1, 2, \ldots\} \) is a base in \(C_i \) \((i = 1, 2, \ldots)\). Then the family \(\{G_{sij}\}_{s \in S_{ij}} \) is locally finite in \(X \), and there exist open subsets \(V_{sij} \subseteq X \) such that \(G_{sij} \subseteq V_{sij} \) for \(s \in S_{ij} \) and the family \(\{V_{sij}\}_{s \in S_{ij}} \) is locally finite in \(X \) (see [2], p. 214). Since \(X \) is locally connected, every point \(x \in G_{sij} \) has a connected open neighbourhood \(W_k(x) \) such that \(W_k(x) \subseteq B(x, k^{-1}) \cap V_{sij} \). Since \(G_{sij} \) is connected, so is the union

\[U_{sijk} = \bigcup_{x \in G_{sij}} W_k(x) \]

for \(k = 1, 2, \ldots \) It readily follows that

\[B = \bigcup_{i=1}^\infty \bigcup_{j=1}^\infty \bigcup_{k=1}^\infty \{U_{sijk}: s \in S_{ij}\} \]

is a base in \(X \). But we have \(U_{sijk} \subseteq V_{sij} \) whence the family \(\{U_{sijk}\}_{s \in S_{ij}} \) is locally finite in \(X \). Thus \(B \) is \(\sigma \)-locally finite which completes the proof of Theorem 4.

P 688. Does each metrizable locally connected space admit a \(\sigma \)-locally finite base consisting of connected sets?

P 689. Suppose \(f: X \to Y \) is a separative locally confluent continuous mapping of a regular space \(X \) onto a metrizable locally connected space \(Y \) such that \(f^{-1}(y) \) is metrizable compact for every point \(y \in Y \). Is \(X \) metrizable?

According to Theorem 2, a positive solution of P 688 would imply a positive solution of P 689.

Added in proof. Problem 689 was solved affirmatively by T. Przymusiński, the solution will appear in one of the next issues of this journal.
REFERENCES

Reçu par la Rédaction le 20. 1. 1969;
en version modifiée le 2. 6. 1969