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A boundary value problem for non-linear
differential equations with a retarded argument

by J6zEF WENETY MYJAK (Krakow)

The present paper concerns the existence and uniqueness of solutions
of boundary wvalue problems for non-linear differential equations with
a retarded argument. The proofs are based on the idea, due to A. Lasota
and Z. Opial, of an application of the contingent equations technique
to the theory of boundary value problems (see [6], [7], [8]).

Boundary value problems for differential equations with lag have
been studied in [1]-[6], [9], [11]. The usual assumptions are continuity,
boundedness or the Lipschitz condition of the right-hand sides of the
equations. Our hypotheses are weaker (of the Carathéodory type), but
the results are obtained under the condition that the initial functions
are constant. Similar restrictions are in [4], [5], [9].

In Section 1 we give the notation and introduce the notion. Sections 2
and 3 contain the main result of the paper: Theorem 2.1 on the existence
and Theorem 3.1 concerning the uniqueness of the boundary value problem
for a differential equation with delay. In Section 4 we consider the approxi-
mation of the boundary value problem for ordinary differential equations
by the boundary value problems for funectional differential equations.
In Section 5 we give some applications of differential inequalities to the
boundary value problem for differential equations with a retarded argu-
ment. Next, in Section 6, as applications of there theorems, we give the
existence theorems for the so-called aperiodic problem. In the last Section
we give a generalization of the problem.

1. Let R™ denote the m-dimensional Euclidean space with norm
|| and let cf(R™) be the family of all non-empty, closed and convex
subsets of R™. For Aecf(R™) we put |A| = sup{|p|: pe4d}.

A mapping F: R™ — cf(R™) is called continuous, if it is continuous
in the Hausdorff metric

d(4, D) = max(supd(p, 4), supé(p, D)), A,Dc< R"™,
peD ped
where 8(p, A) denotes the Euclidean distance of the point x from the
set A.
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We say that a map F(i) of the interval [a, b] into cf(R™) is Lebesgue
measurable if for each closed A — R™ the set {t: A nF(t) = 0} is Lebesgue
measurable [10].

We say that a map F(t, p) (resp. f(¢, p)) of [a, b] X R™ into cf(R™)
(resp. R™) satisfies the Carathéodory conditions if it is measurable in ¢ for
each pe R™ and continuous in p for each te [a, b].

Let [a, b] be a compact interval of R' and let C7, ,; denote the space
of all continuous functions x: [a, b] — R™ with the norm of the uniform
convergence, |x|| = max{|x(?)|: te [a, b]}.

Consider the differential equations with a retarded argument

(1.1) ¥(t) =ft,z(t—7) (a<t<h,v>0)
and a boundary condition
(1.2) Nz =r (reR™),

where f: [a,b] X B" — R™ and N: Cf,, — R™.
Side by side with problem (1.1), (1.2), consider the differential equa-
tions with a retarded argument and with multi-valued right-hand sides

(1.3) (e Flt,v(t—1)) (a<t<b,7>0),
where F': [a,b] x R™ — cf(R™), and the homogeneous condition
(1.4) Nx =0.

By a solution of equation (1.1) (resp. equation (1.3)) we mean any
absolutely continuous function z: [a— 7, b] — R™ which satisfies (1.1)
(resp. (1.3)) a.e. (almost everywhere) on the interval [a, b] and is constant
on the interval [e—, a].

2. THEOREM 2.1. Suppose that I, f, N satisfy the following assumptions:

(i) F(t, p) satisfies the Carathéodory conditions, is homogeneous in p
and, moreover,
sup |[F'(¢, p)| < @(1),

where @(t) ts an integrable function on [a, b];
(ii) f(t, p) satisfies the Carathéodory conditions and, furthermore,

b
.1 .
lim — | supé(f(t, p), F(¢, p))dt = 0;
n—oo MW o Ipl<n

(1ii) the mapping N is conlinuous and homogencous,

If z(t) = 0 is the only solution of problem (1.3), (1.4), then there exists
at least onc solution of problem (1.1), (1.2).
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Proof. Consider the mapping » of B = Cf;, x B™ into itself such
that for every point (x, p) its image h(x, p) is a pair (¥, g) given by the
formulae

¢
g(t) = [fls,2(s—1))ds+p, §=p—Na+r
a
and the set-valued mapping H of B into B such that, for every point
(@, p), its image H (x, p) is a set of all pairs (¥, ¢) given by the formulae

t
y(t) = [u(s)ds+p, g =p—DNa,
where u is any measurable function satisfying w(s)e F(s, x(s —7)).

It is easy to see that if (x, p) = h(z, p), then x is a solution of problem
(1.1), (1.2). Similarly, if (z, p)e H(x, p), then x is a solution of problenx
(1.3), (1.4) and, by our assumptions, we immediately deduce that (x, p)
= (0, 0). '

Put

l(z, p)”o = |lz||l+ Ipl (xe sz,b]a De Rm)~

Since the sets I'(f, p) are non-empty and convex, H(z, p) is alco
non-empty and convex.

Thus, to apply Theorem 1.1 from [6] it remains to verify that

1° lim 0(”*(“"7?)7}1(-’”1?)) _

i(x, p)ig—>o0 [z, p)llo

2® H is homogeneous;

3% H and & are completely continuous.

1" follows from (ii). 2° is evident. It is obvious that A is completely
continuous. In order to prove that H is completely continuous, it suffices

to show that H is compact and upper semi-continuous.

It is easy to see that | J H(x, p) is contained in a set Z, of all
~ ~ " (1‘, p)"0= 1
pairs (x, p) given by the formulae

j

t
5 fu(s)d3+_'p, where |u(s)] < @(s), Ip] <1,

1P| < sup |Nz|+1.
Jzil=1
Sinee the function ¢ is integrable on [a, b], the functions z are bounded
and equicontinuous on f{a, b]. Since N is continuous and homogeneous,

sup |Nx| is bounded and, consequently, the closure of Z, is compact.
lai=1
Therefore, the mapping H is compact.
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In order to show that H is upper semi-continuous, we should show
that for all sequences {(«*,»*)}, {(v% ¢")} = Cfy X R™ the conditions
(mk, pk) — (@, p), (yky qk) — (¥, @) and (yka qk)e H(xk’ pk) (k =1,2,...) imply
that (y, g}« H(z, p).

Obviously,

(2.1) Yy = fu"(s)ds +p*,  where u*(s)e F(s, 2"(s — 7))

and
(2.2) ¢ = p*+ Nat.
Hence |
(4" (@) « Flt, *(t—1)).
By the semi-continuouity of F and from the last condition we have
llcim g((y"(t))', F(t, a;(t—-c))) =0.
In virtue of the Pli§ lemma [10]
(2.3) Y (e F(t, x(t—1)).
In addition, upon passing to the limit in (2.1) (for { = a) and (2.2),
we have
(2.4) y(e) =p, ¢ —=p+Nz,

and consequently
1
(2.5) y(t) = [y'at+p.

From (2.3), (2.4) and (2.5) it follows that (y, q)e¢ H (x, p). This completes
the proof of Theorem 2.1.

3. In this section we shall formulate conditions for the existence
and uniqueness of solutions of a boundary value problem (1.1), (1.2).
Namely, we make the following assumptions:

(iv) f(t, p) is measurable in t for each p e R™ and satisfies the conditions

: b
f(t,p)—f(t,q)eF(t,p—q), flf(t70)|dt< +°°;

(v) N s linear and continuous.

THEOREM 3.1. Suppose that F, f, N, satisfy (i), (iv), (V) and that z(f) = 0
18 the unique solution of problem (1.3), (1.4). Then there exists exactly one
solution of problem (1.1), (1.2).
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Proof. Sinee conditions (iv), (v) imply (ii), (iii), the existence of
solutions of problem (1.1), (1.2) follows from Theorem 2.1.

Now, suppose that Z(f) and #(¢) are two absolutely continuous solu-
tions of problem (1.1), (1.2). By (iv) and (v), #(t)—=2(?) is a solution of
(1.3), (1.4). From the uniqueness of this problem it follows that Z(?) = #(¢)
on [a, b].

4. Consider the ordinary differential equation
(4.1) ¥'() =f(t,2(t) (e<t<b)
with boundary value condition (1.2) and the contingent equations
(4.2) @' (e Ft,z(1) (a<t<b)

with boundary value condition (1.4).

THEOREM 4.1. Assume that funclion F satisfies (1). If x(t) =0 s the
only solution of problem (4.1), (1.4), then there is a 7y > 0 such that for
0 < 1< 79, (t) = 0 is the unique solution of problem (1.3), (1.4).

Proof. On the contrary, suppose that for each % there exist a v, < 1/k
and a corresponding non-trivial solution z* of problem (1.3), (1.4) such
that

(4.3) (@) e Flt, a*(t— 7)), Na* =0 (k=1,2,...).
Since N and F are homogeneous, we may assume that
lz* (@) = 1.

Hence, from (4.3) and (i) it follows that the functions z*(f) are uniformly
bounded and equicontinuous on [a, b]. By the Arzela theorem, passing
if necessary to suitable subsequences, we may assume that

x*(ty > x(t), as k — oo.

Since the functions z*() are absolutely continuous and 7, < 1/k, we have

(4.4) oF(t—v,) - 2(t), as k— oo.
Furthermore,
(4.5) (#*@) e F(t, 21— 7).

By (4.4), (4.5) and (i) we have
limo((z*@)), F(t,z(t)) =0 a.e.
k—o00
The Pli§ lemma [10] yields
@' (t)e F(t, x(t)).

2 — Annales Polonici Mathematici XXVIIL.2.
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Moreover, it is easy to see that ¥o = 0 and |x(?)|| = 1, which is impossible.
This proves the theorem.

The next corollary is an immediate consequence of the preceding
theorem.

COROLLARY. Suppose that x(t) = 0 is the unique solution of problem
(4.2), (1.4). Then there exists a 7, > 0 (which depends upon F,f, N) such
that for v < 7, problem (1.1), (1.2) has

1° at least one solution if the functions F,f, N satisfy conditon
(1), (1), (iii);

2° exactly one solution if the functions F,f, N satisfy conditions
(i), (iv), (v).

THEOREM 4.2. Assume that F,f, N satisfy conditions (i), (iv), (V).
If problem (4.2), ('1.4) has only the trivial solution x(t) = 0, then the solutions

of the boundary value problem (1.1), (1.2) converge to the solutions of the
boundary value problem (4.1), (1.2) as 7 — 0.

Proof. The proof consists in showing that

lim |z (t) — 2(t)| = 0,

k—o0

where (t), z¥(t) denote the solutions of problems (4.1), (1.2) and (1.1),
(1.2) respectively; that is,

(@) = f(t, ()} a.e. on [a,b], N& =7 (re R™)

and

(4.6) (z*@) = f(t,2*(t—7) a.e. on [a,b], No¥ =r (v, < 1/k, < R™).
Put
u(t) = () —&(1);
we have
(W) = ft, & — 7)) —f(t, 2(1))

= f(t, @t — 7)) —f(t, 2 — 7)) +f{t, B —7,))—f(t, B(2)).
Hence by (iv) _

(W (@) e P(t, u*(t— 1)) +e(t, 7)) a.e. on [a,bd],
where

e(t, T,) = f(t, a%(t—tk))—f(t, 5?(15)).

Since 2 absolutely continuous, for ¢ fixed f is continuous in #, inequality
7 < 1/k implies that for each fixed ¢

(4.7) | lime(¢, 7,) = 0.

k—co
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Now, suppose that there exists a sequence of functions {u*(¢)} satis-
fving (4.6) and such that the sequence {|j«"|[} is not convergent to zero.
Replacing {|w*||}, if necessary, by a subsequence, we may assume that
ilat®|} — ¢, ee (0, + c0). Setting

o )
v =

we obtain
&
K

The functions +*(¢) are uniformly bounded and equicontinuous,
hence, by the Arzela Theorem, passing if necessary to a suitable sub-
sequences, we may assume that v*(¢) — v¢(f). Since 7, < 1/k and the
functions v*(¢) are absolutely continuous,

(4.8) () e F(t, v*(t— 1)) +- Nok(t) =0, ¥ = 1.

(4.9) (U—v) > o), as k— co.
By (4.7), (4.8), (4.9) and (i)
lim g((v"(t— ), F(t, v(t))) =0 ae.
Thus, from the I:r—;?na of Plis§ it follows immediately that
v'(t)e F(t, v(?)),

and obviously Nv = 0, |[v| = 1, which gives a contradiction. Thus [u*|| — 0.
This completes the proof of Theorem 4.2.

5. Theorems 2.1 and 3.1 are particularly simple if equation (1.3)
reduces to a differential inequality

(5.1) [z (1) < m(t lw(t—r)|),

where the function w: [a, b] x CT;_; 4 — [0, oo) satisfies the condition:

(vi) for each te[a,b], w(t,u) is continuous and homogeneous with
respect to w; for each we [0, 00), w(t, u) 18 measurable with respect to t; the
functions sup{w(t, u): w < k} are integrable for k = 1,2, ...

Setting

F(t,p) = {QG R™: lql < wft, lpl)}7

we immediately obtain from Theorem 2.1

THEOREM 5.1. Let the functions N and w satisfy conditions (iii) and (vi),
let f satisfy the Carathéodory conditions and, in addition, the inequality

i, p)< oft, Ip)+9(),
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where the function ¢(t) is integrable on [a, b]. If problem (5.1), (1.4) has
only the trivial solution x(1) = 0, then for each re< R™ there exists at least
one solution of problem (1.1), (1.2).

As a consequence of Theorem 3.1 we obtain
THEOREM 5.2. Suppose that N satisfies (v) and

1f(t) P) "‘f(tr Q)l < oft, lp—ql),

where » s as in Theorem 5.1. If problem (5.1), (1.4) has only the trivial
solution z(t) = 0, then for each re R™ problem (1.1), (1.2) has exactly one
solution.

6. As an application of Theorems 5.1 and 5.2 consider for (1.1) the
following aperiodic boundary value condition:

(6.1) z(@)+Az(d) =r (1> 0,reR™).

Before stating the Theorem of this section, we will prove the following
LemMma 6.1. If

(6.2) 1— 26K~ > ¢,

then z(t) = 0 s the unique absolutely comtinuous fumction satisfying the
condition

(6.3) @0 < Ele(t—7), z(a@)+iz(d) =0 (1> 0)
almost everywhere on [a, b].
Proof. Integrating inequality (6.3) over [a,t], we obtain
() — z(a)| <Kf1w(s—r)rds.
Hence '
(6.4) | (2)] <'|w(a)l+Kflm(8—T)ld8-

Let
u(8) = sup |z(6)].

be[s—N,s]

From (6.4) we obtain

u(t) < lw(a)l + K [ u(s)ds.

By Gronwall’s inequality,

(6.5) u(t) < |x{a) X9,
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which implies that

(6.6) [ (b)| < | (@) X,
From (6.3) we have :
z(a)| = Alz(b)].

From this and (6.6) it follows that
(6.7) @ (a)] < Al (a)]XO=.

By (6.2) and (6.7) it follows that |x(a)] = 0, and by (6.5) «(¢) = 0. This
completes the proof of the lemma.
Using Lemma 6.1 and Theorems 5.1 and 5.2, we obtain

THEOREM 6.1. Let the function f satisfy the Carathéodory conditions
and let the following gssumptions hold:

1° f satisfies the inequality
1t 2®)| < K2t — 1)+ (1),
where ¢(t) is integrable and (6.2) holds true; then problem (1.1), (6.1) has

at most one solution.
2° f satisfies the condilion

ft,p)—ft, )< Klp—gql.
If 2 satisfies (6.2), then problem (1.1), (6.1) has exactly one solution.

7. 1t is easy to see that the results of the present paper hold true
also in the case of differential equations with a retarded argument

@' (1) = f{t, oft— (1)),
and the contingent equations
' (e F(t, o (t— (1)),

pi‘ovided that z(¢) is non-negative, continuous and z(¢) -0 as ¢t = 0.
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