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CONCERNING DUAL SYSTEMS OF LINEAR RELATIONS (I)
BY

KAZIMIERZ FLOREK (WROCLAW)

In this paper we prove two general theorems on dual systems
of linear relations. As corollaries to them, we obtain many known
theorems on such systems that are used in the theory of linear
economic models [1].

To our purpose, it is convenient to use a modification of the matrix
‘notation for vectors, which consists in that we give relations between
vectors-rows and relations between vectors-columns an additional logical
meaning. This symbolism not only leads to a compact formulation of
theorems but also makes the proofs more clear. In the proof of our gen-
eral theorems we use the fixed point theorem of von Neumann [3] in
the formulation of Kakutani [2]:

Let K and L be bounded, closed and convex sets in Euclidean spaces
R™ and R", respectively. Consider their Cartesian product K XL in the
space R™*". Let U and V be two closed subsets of K XL such that, for
every ,eK, thg set U, composed of points yeL with (2o, y)eU,
and, for every y,eL, the set V, composed of points zeK with
(z, yo) ¢ V are non-empty, closed and convex. Then U and V have a point
in common.

.Notation. Lower-case Greek letters a, 8, ¢, v, 0,6 and y denote real
numbers. Lower-case letters p, ¢, 7, 8, 4, v, # and y denote column vectors
with a finite number of real components, while letters a,b,c,d,e,f
and ¢ stand for real matrices. The number of rows and columns of matrices
entering formulas is assumed to fulfil usual requirements of compati-
bility as regards matrix multiplication and addition. The transpose
of a matrix will be denoted by a prime. Thus p’, ¢, ', s’, ', ', " and
y' denote always row vectors. By 0 we denote, as the need will be, a null
matrix, or a column of zero’s, or a row of zero’s.

The conjunction of relations will be expressed by writing the rela-
tions one above the other. The alternative of relations will be expressed



144 K. FLOREK

by writing them one after the other, with a comma between. In this
spirit, inequality
»>4q

will be understood as the conjunction of all the inequalities between
the corresponding components of vectors p and ¢, with the sign > between
them, and

pl > ql
will be understood as the alternative of the inequalities between the

corresponding components of vectors p and ¢, with the sign > between
them. An analogous meaning is given to the following relations:

pP=2q; P=¢G P FG
p=q¢; p =45 p#q.
Sentences will be denoted by capital letters A, B, ... The conjunction
of A and B will be denoted by A ~ B, the alternative by 4 v B. If 4
implies B, we write 4 < B. By 4 = B the equivalence of A and B will
be meant. A’ stands for the negation of A. Note that in this spelling de

Morgan’s laws for sentences concerning relations between components
of vectors obtain a very compact expression, as for instance

(r=s8) =@ <s8) or (r=s8)=(@ #£3).

The disjunction of 4 and B will be symbolized by 4 | B. The uni-
versal and the existential quantifiers will be denoted by (M) and U, re-
spectively.

K and L stand for sets in Euclidean spaces R™ and R", respectively.
Their points will be identified with vectors (= one-column matrices).
When not stated otherwise explicitely, # will be supposed to run over
R™ and y to run over R".

LEMMA. If K and L are bounded, closed and convexr sets, ¢(x,y) and
y(z,y) are continuous real functions defined for xeK and yeL such that
o(z,y) is a convexr function of y for every xeK, and y(x,y) is a conver
function of = for every yeL, then

y <
N Ul 9) <o)~ N U(ple9) <y) u(‘””” Y) "”).
YeL xeK <

xeK YeL zxeK Y
YeL

Proof. Note that if y(y) is a convex function of y, then the set of y
for which y(y) < x is convex, and if yx(y) is continuous, then this set is
closed. If we apply this to functions ¢ (2, y) for a fixed # and to functions
y(z, y) for a fixed y, and use the boundedness of K and L, we see that
the conditions of von Neumann’s fixed point theorem are satisfied and
the Lemma follows.
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Theorems on linear relations. We are going to prove
THEOREM 1. We have

ow+by > aut+cov <0
but+dv =0
N Ulezt+dy=s]|U
abedrs up u=0
x>0

rut+sv>0

Proof. Denote the propositions

art+by > au-l—c’vgo
P 1 bu+dv=0
cx = 8 an
H Ty ) u=0
%20 'v'u+8"v>0

by A and B. Theorem 1 may be then expressed in the form
A|B

a!b!c ld’r’a

and is equivalent with the conjunction

(1) | N A~B)]~] N 4" ~B)].
ab,cd,r,s ab,c,d,r,s
We first prove
(2) N (4~ B).
ab,cd,r,

By multiplying the vectors in A from the left by arbitrary vectors
# >0 and v, we obtain the implication

A c N (war+uby+v'ce+o'dy > u'r+0's).
Yy w0

? ’
=0 u>0

(]

Similarly, by multiplying the vectors in B by arbitrary vectors z > 0

and y, we conclude that
Bec U NE@@autz'cv+y'dutydo<0<rutsv).
w20 220

These consequences of A and B contradict each other. So (2) holds
true.

It remains to prove that
(3) N (4"~ B).

ab,cdrs
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To do this observe that

4) B=N@Watve>0,u'b+v'd#0,u'r+v's<0)
u,v
u=>0

c U @Wwap+vep+u'bg+v'dg >0, —u'r—ov's >0)
430 P30

cN U Ull(wap+vep+u'bg+v'dg)a— (u'r+2's)f > 0]

€4y DI a=0
u=>0 p>0 >0

c N U @Wwartover+udytov'dy—u'r—o's > 0).

0 220

vu<gl el

o<1 Y'Yl
The first of the above implications is valid, for we can choose vector p
so that only those its components are positive which correspond to posi-
tive components of vector u'a-+ v'c. Similarly, we can choose non-zero
components of ¢ and their signs to correspond to the non-zero components
(if any) of u’b+ v'd so as to ensure the positivity of the respective products.
The next implication is obvious. Finally, we obtain the last by substi-

tuting

m=p£6 and y =490

B

with a sufficiently small positive 4.
In a similar manner we can write the following chain of implications:

| R

(5) AI = q (wlal_l_ylbl <7", w'd’+y'dl — 8’)
z,y
x>0

c U @adpty'bdpta’cqty'dg—rp—sq=a)
250 gg'é:
a< LI

c N U Wazr+vex+u'by+v'dy—u'r—o's =)
zy Uy
=0 u=>0
Tr<l vu<l
v'y<l v'v<l
y<0

cU N U Waz+vecx+u'by+ov'dy—u'r—o's < )
<0 Ty uy "
=0 u>0
r'r<l vu<l
Y'y<l v'v<l

To see the last implication, take

¢ = max min(u ax+v'cx+uw'by+v'dy—u'r—o's).
X)) u,v
>0 u>0
rr<l v'u<l
Y'v<1 v'v<1
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This quantity exists and is negative, because the function

w((Z), (Z)) =u'ar+vcx+uby+vdy—ur—o's

is continuous and the domains considered are closed and bounded. We
claim that the last conclusion of (4) and the last conclusion of (5) con-
tradict each other. Namely, by taking the set of vectors (Z) with » > 0,

w'u <1 and v»'v <1 for K in the Lemma, the set of vectors (:) with

>0, 2’2 <1 and y'y <1 for L, and putting

= () 6) = () G)
(). 6) >

Grelo((o)- () <o <o

This is, however, impossible. Thus (3) holds true and the proof of
Theorem 1 is complete.

COROLLARY 1. If we assume, in Theorem 1, that only one of the matri-
ces a,b,c,d is not zero, we get the four known ([1], p. 41-47) theorems
on systems of mon-homogeneous linear equations and inequalities. Here they
are:

we conclude that

a'u <0
= >0 ([1], p. 47)
DL‘%J 23>0 ILu) U = y P- ’
ru >0
b’u =0
QLyJ(by>r)lLuJ u>0 ([1], p. 46),
’ r’u >0
N U(cw:s) cvs0 1 44
cs =z \x =0 |Lv)(8"0>0) () . )
adv=0
U(dy=8)lU(, ) ([1], p. 41).
ds v e \8'v>0
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Let us now proceed to
THEOREM 2. We have

fr—ey >0

Proof. If we substitute (fi’l«) for a, (:Z) for b,e¢’ for ¢, —g

for d, # for z, y for y, (2) for r, (:}) for u,v for v and 0 for s in

Theorem 1, where by ¢ we mean the unit matrix, we obtain proposition

fr—ey =0 flut+w)+w—ev <0
(6) N Ulfe—eyta>r|l U|—¢@tw)—go=0
e,f.0 r' zy u,,w
:5:5 220 \ g1 gy =0/ 420 rw >0
>0

Suppose now, to the contrary, that Theorem 2 is not true. The
more so we had

’

fe—ey =0
/U Nlfc—ey+z=>7r
ef,0r T,V
L vomgy =0
r>0

In view of (6) we then had
f'(ut+w)+wt+ev <0
U Ul —-¢€¢utw)—gv=0

e, f,9,r uow

—f=f ux=o ’
—9=0 w>0 r’w >0

r>0

If we multiply the first inequality above by (v 4 w)’, and the equa-
tion by v’, then add the results side by side and make the possible reduc-
tions of similar terms by utilizing among others the antisymmetry of f

and g, we conclude that
(ut+w)w <0
u ("7 .
u,v,W rw >0

u>0
r>0

This is, however, a contradiction. Theorem 2 is thus proved.
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COROLLARY 2. We have

fr—ey >0 'z >0
N|fe—ey+z>0)c || (fr—ey) >0

ef.0 Ty

Toze '\ dw—gy =0 v'ey =0

By 2|y > 0 we understand here and in the sequel the conjunction
of all disjunctions of the form z; > 0 | y; > 0, where y; and z; are com-
ponents of vectors y and x that correspond to each other.

Proof. To see this let us consider the first three relations. By multi-
plying the third of them by y’ we get y'ex = 0 because of the antisym-
metry of g, and z'ey = 0 by transposition. If we multiply the second
one by 2’ and use the antisymmetry of f as well as the relation z'e¢y = 0,
we obtain #'x > 0. Next we obtain «'(fr—ey) = 0 by multiplying the
first relation by z’ and using the antisymmetry of f and the relation
x'ey = 0. This together with fr—ey >0, >0 and fr—ey+o>0
implies z | (fx—ey) > 0.

CoROLLARY 3. We have

fe—ey =0 x'x >0
N Ulfr—ey+ax>0)~|z|(fr—ey) >0
efd Zy
SR T ep—gy =0 x'ey =0

Proof. The first three relations are just in Theorem 2, and the
last three may be added in view of Corollary 2.

COROLLARY 3a. We have

fe—ey =0
N U |lzl(fz—ey) >0
oz |
—g=¢' T=0 ex—gy =0

This corollary is clearly a formal consequence of Corollary 3. Both
are, however, equivalent.

COROLLARY 4. We have
fr =0

N U lfe+z>0

—f=1" z>0
0 \z|fx>0
Proof. Put ¢ = g = 0 in Corollary 3.

This corollary is equivalent to Theorem 7 in [4], p. 16, and formally
stronger than Theorem 5 in [4], p. 13.
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COROLLARY 5. We have
a’'v+b'qg >0
a'v+bq+u>0
cv+d'qg=0
—au—cp =0
—au—cp+0v>0

a,bcd u,v,04

RS —bu—dp =0
v>0
wuto'v>0
u|(a’v4+b'qg) >0

v|(—au—cp) >0

qgbutv'ep =0

Proof. To see this substitute
; 0a 0bd 0d
= — e = —_ =
—a0)’ —co0)’ T=\_qa0)
&Xr = y y —
v q
in Corollary 3.

Corollary 5 is only formally stronger than Theorem 4 in [4], p. 12,
and it is equivalent to Theorem 6 in [4], p. 14.

COROLLARY Ha. We have
/ a’v+b'q=0 \

¢v4d'g =0
—au—cp =0
a,b,c,d u,p,0,q — bu— dp =0

u=0
=0

(#)>0 | * | (@'v+b'q) >0
\'v |(—au—cp) >0

Proof. Put in Corollary 3a the substitutions that were used in the
proof of Corollary 5.

CoroLLARY 6 (formally stronger than Theorem 1 in [4], p. 8). We
have

b'q >0
b'g+u>0
U
b ug bu =0

ulb'qg>0
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Proof. Put a = ¢ =d = 0 in Corollary 5.
COROLLARY 7 (formally stronger than Theorem 2 in [4], p. 9). We have

b'q>=0
b'q+u>0

Proof. Put a = ¢ = 0 in Corollary 5.

COROLLARY 8 (formally stronger than Theorem 3 in [4], p. 11).
We have
a'v>=0

a'v+u>0

: L>Jo —au =0
:;o —au+v>0
ula'v>0

v| —au>0

Proof. Put b =c¢ =d =0 in Corollary 5.

Concluding this paper I wish to thank Professor Stefan Zubrzycki
for his kind discussion during its preparation.
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