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Abstract. Let X be a uniformly convex Banach space and K a nonempty bounded closed and
convex subset of X. For ¢ > 0, let T, denote the family of all nonexpansive mappings defined on
K and taking values in an &-neighborhood of K, and let T denote the family of all nonexpansive
sell-mappings of K. It is shown that if TeZX, and if d = diam (K), then

inf {||x— T(x)Il: xeK} <(d+26)5*(2¢/(d+2¢))+¢,
where J denotes the modulus of convexity of X. It is also shown that if ne N is chosen so that

(1—3(2¢/d)y < ¢/d, then for each TeT and xeK, |S"(x)—S"*'(x)| <&, where S =(1/2(I+T).

1. Notation and definitions. Throughout the paper, X will denote a Banach
space. For xe X and r > 0, let B(x; r) denote the closed ball centered at x with

radius r. The modulus of convexity of X is the function é: [0,2]—[0,1] defined
by

o(e) = inf{1—(1/2)lIx+yl: x, ye B(0; 1), lx—y| = &}.

The space X is said to be uniformly convex ([1]) if d(¢) > O for each ¢ > 0. For
such spaces it is known that the function § is continuous and strictly increasing

on [0,2) (see [4], [9]). Also:
(1.1) t(e/t) increases as t > 0 decreases (with ¢ fixed; see [5]).
We shall use the following routine consequence of the definition of ¢ (cf. [10]).
(1.2) If u, ve X satisfy |u| <o, |v|| €¢ and |lu—v| = ¢, then
(1/2)lu+v] < o(1—3(e/e)).
For K< X and xeX, let
dist(x, K) = inf{[x —u|: ueK}; diam(K) =sup{flu—v|: u, veK};
and for ¢ >0, let N (K) denote the closed e-neighborhood of K:
N,(K) = {xe X: dist(x, K) < ¢}.
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Recall that a mapping T: K—- X is said to be nonexpansive if
| T(u)— T (v)|| < lu—v| for each u, ve K. (Much of the extensive fixed point
theory for nonexpansive mappings is summarized in [6], [7].)

2. Approximate fixed points for approximate self-maps. Let K be a {ixed
bounded closed and convex subset of a Banach space (K # @) and for ¢ > 0 let
X, denote the family of all nonexpansive mappings T for which T: K — N_(K).
Let

o(e) = sup {inf{|x—T(x)]: xeK}}.

TeXg

In [8] it is shown that if K has a nonempty interior and if
r=sup{r>0: B(x; r) = K for some xe K}, then

) ol6) < [diam(_K""“]e.

F+e

(Note that this implies g(¢) = ¢ if K itself is a ball) For arbitrary K, the
following qualitative result is also proved in [8].

2 o(e >0 as e-»0".

In this section we show that the above results may be further refined if X is
assumed to be uniformly convex. Specifically, we have:

THEOREM 1. Let X be a uniformly convex Banach space with modulus of
convexity 6, let K a nonempty bounded closed and convex subset of X with
diam (K) = d, and let X, denote the family of all nonexpansive mappings T for
which T: K - N,(K). Then for TeX,,

inf{llx—T(x)|: xeK} <(d+2¢)d~! [d—ifﬂ]-}-a’

Proof Let & denote the family of all nonempty closed and convex
subsets of K with the property Ce R if and only if T(C) = N, (C). Partially
order K by set inclusion and let € = {C,: «€ A} be any descending chain in K.
The set C, = () C, is closed convex and nonempty (by weak compactness).

Also, if xe C, then for each « there exists x,e C, such that |x,— T(x)| <e.
Since K is weakly compact, the net {x,: ae A} has a subnet which converges
weakly, say to w, with weC,. Since [[w—T(x)| <suplx,—T(x)| <&, it

follows that T(C,) = N,(C,), ie., C,€ K. This proves that every chain in R has
a lower bound, so by Zorn’s Lemma & has a minimal element K,. Also, since

inf{[x—T(x)|: xeK} <inf{jjx—T(x)}: xeK,},

we may assume at the outset that K itself is minimal (with diam(K) = d’ < d).
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Now let z and r denote, respectively, the Chebyshev center and radius of
K. (Thus ze K and B(z; r) is the smallest ball centered at any point of K which
contains K.) Since X is uniformly convex, d/2 <r <d. Set

H=B(T(z); r+¢)n K.

We claim H = K. To see this it suffices, by minimality of K, to prove
T(H) < N,(H). Let xeH. By assumption there exists ye K such that
| T(x)—yll <e. Thus

ITE@=yI < ITE-TXI+ITE) -yl < lz=x[+1TXx)—yl <r+e,

proving ye H. Hence T(x)e N (H), establishing the claim.

Since K = H = B(T(z);r+¢)n K, we conclude K < B(T(z); r+¢). Also,
by assumption, there exists pe K such that ||p—T(z)| < &, so it follows that
K < B{(p; r+ 2¢). Also, since r is the Chebyshev radius of K there exists xe K
such that

p+z
r< [—=——x
k

We now have |x—p|l <r+2¢ and ||x—z| <r+2e. By (1.2),
- —x

lp—2z|l
<|1- .
: l [1 6[r+28]](r+2s)
Therefore (assuming [z — T(z}|| = &),
s[lz=T@I—=¢] _ [lp=2l] _, r _ 2
r+2¢ r+2¢ r+2e r+2¢

Consequently,

lz—T(z)ll—e lz—T(2)l—e

|p+z

It follows that

1| 2e
lz—T()| < (d+2¢)d I:d+28]+8.

3. Uniform iteration. It is shown in [5] (cf. also [2]) that if K is any
nonempty bounded closed and convex subset of a Banach space and if ¢ > 0,
then there exists an integer N such that if T: K — K is nonexpansive, if x,€ K,
and if n> N, then |[S"(xo)—S"*'(x,)l <&, where S denotes the mapping
1(I+ T). The proof given in [5] is purely an existence proof offering no estimate
on the magnitude of N. Indeed, it seems unlikely that such estimates would be
easy to obtain in general settings. Although the problem appears to have
received little attention, it would appear to be a tractable one in special settings.
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(In a conversation with the first author, J. Alexander observed that it suffices to
take N > ¢ '—2 if K is the interval [0, 1] in R')

Here we give an estimate for N in terms of the modulus of convexity of
a uniformly convex space.

THEOREM 2. Let X be a uniformly convex Banach space with modulus of
convexity 0, let K be a nonempty bounded close and convex subset of X with
diam(K) =d, and let ¢ >0 (e <d/2). If T: K— K is nonexpansive and if
S = (1/2XI + T), then for any xe K, ||S"(x)—S"*(x)|| < ¢ for all ne N satisfying
(4) (1—6(2e/d))" < ¢/d.

Proof. Under the assumptions of the theorem it is well known that
T (hence S) has at least one fixed point pe K. Suppose n satisfies (4). Since
{1IS*(x)—S***(x)||} is monotone decreasing, if ||S*(x)—S**'(x)| < ¢ holds for
some k < n there is nothing to prove. So we may assume
(5) e<IS"')=S") < [S" ) -S"T M) < ... S MIx—S()] < d.
Now, [$" !'(x)—S"(x)|| >¢ implies ||S""(x)— T (S~ *(x))|| > 2¢. Also, we
have ||T(S""'(x))—p|| < 8" '(x)—pll. Thus, since S"(x) = (1/2)(S"""'(x)+
T(S"~ 1 (x))).

2¢
n _ < -5 n—1 _ .

In view of (6),

i°w-p1 < 11| 1-8 g7 | [P

and by monotonicity of 4,
I18"(x)—pll < [1-06[2¢/d]]"d < (¢/d)d = e.

Since p is a fixed point of T with T nonexpansive, ||T(S"(x))—p|| < &; hence
|8"(x)— T(S"(x))|| < 2¢ yielding

1S"(x) = 5™ Ll = (1/2)]|S"(0)— T(S")| < e
4. Remarks.

(4.1) Since r < d(1—4(1)), implicit in (3) is a sharper estimate for Theorem 1,
namely:

. -1 2
inf{[lx—T(x)|I: xeK} <[d(1-86(1))+2¢}é [d(l—&(gl))+2s:|+8

However, even this estimate is not precise since it does not yield the known (see
[8]) fact that if X is a Hilbert space,

inf{||lx—T(x)|: xeK} <e.

(4.2) In cases where the modulus of convexity is explicitly known, the
estimate of Theorem 2 can be improved. For example, if X =/?, 2 < p < w0,
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then 8(c) = 1—(1—(e/2)?)'’?. Computing directly from (6):
ISG)—pll < (1—6(2¢/d))d = (1 —(e/d))'/Pd = (d” —eP)''P;

152 () —pll < [1—5[ 2 ]](d”—ﬁ")”" = (dP ~2eP)'/P;

(dp_ap)llp
and continuing:
IS*(x)—pl < (@ —ne?)'’?, n=1,2,..

Also, (d” —neP)!'? < e if and only if n > (d/e)? — 1. We note that this estimate for
n i1s better than that given by (4).

Also, we note that for X = R' and K = [0, 1], d(¢) = ¢/2, and a repetition
of the above argument yields |S"(x)— p| < 1 —ne; hence |S"(x)— p| < & provided
nze -1,
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