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ON COINCIDENCES IN RENEWAL STREAMS

1. Introduction. Let us consider two sequences of random variables
X"’, n=1,2,...}, i=1, 2, which represent the working times of two
Tenewed eclements. Assume that these sequences consist of independent,
mteger-value:d positive random variables which are identically dlstrlbuted for

ed i. The last assumption is noted as X(" 2 X® where = denotes the
®quality of distributions.

The considered sequences of random' variables generate the renewal

Streams S =0, SP=XP+XP+ ... +X9, n=1,2,..., the renewal
Processes N"’(t) =max {n 2 0: SV <t' t>0, and the residual time
I @ (5) —

Processes 3y (z) = SVogea b t20,i=1,2

Let T be the moment of the first coincidence of renewals in the
°°1181dered renewal streams.

T = min {t > 0: YV (t) = y? (1) = 0}.

In the paper the distribution of the random variable T is considered. We
?I‘(a dee in detail the special case of identically distributed streams for which
Xt 4 X'?, "and”an example of Bernoulli trial stream. In addition, the
chs'tl‘lbutlon of the number of renewals in the interval (0, T) and also the
8eneralized problem of coincidences in ‘the alternating processes are
.°°n31dered
‘Note that the bivariate stochastic process (yV(t), Y@ (), t 20, is a
M?J-l‘kov process; therefore, the study of the random variable T leads to the
St passage problem to the state (0, 0). In the case where the support of the
om variables X'V and X'? is finite, the distribution of the random
Variable T is a phase-type distribution in the Neuts sense [7]. The study of
€ distribution of the number of renewals to the coincidence moment is the
Problem of the number of entries to the fixed set of states before absorption
0 a Markov process. The coincidence phenomena in renewal streams have
- Curred in Kingman’s paper [5] for the proof of the semigroup character of
'Uperation on the renewal sequences.
In- spite of this simple interpretation of the coincidence problems it
1s that the standard methods of studying the mentioned characteristics
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of Markov processes are not efficient. In the paper we reduce the technical
difficulties with regard to practical uses. Our problem follows from an
analysis of the safety system used in mining winding shifts (see [2]).

2. Auxiliary random variables. Let us introduce the auxiliary random
variables T(i), i=0, 1, +£2, ..., defined in the following way:

T(0) =
@ f(i) _ {min >0 Y1) =y?()=0| X = i‘,' i>0,
min it > 0: ") =2 =0] XP=-i". i<O.
The conditions of the model imply the equalities
(2) T < min(X, X4+ T/ (X = x@) £ T(x) & T(= x),

and
min(i, X2)+ T'(i—X?), >0,

G) T L TG XM TU=XT),

min(—i, X'")+T"{i+X"Y), <0,
th;red X‘”, X(‘IZ’, TG, T"() = £1, £2,..) are mutually indépendent and
T'() < T () £ T().

" Let us introduce the following notation for the distributions:
7 Pf““ — PI(X(” - k), p(2) pr(X(Z) = k),

P.=Pr(T=k, P/()=Pr(TG@) =k, i=0, +1.+2, .. k=12, ...

3. Time of coincidence. In this section we consider in two ways the
dlStl'lbllthl’l of the random vandble T In the first way, using renewal theory
we analyze the dlstnbunon and the expected value. The second way, moreé
complicated, enables us to study the higher order moments. .

Let S,, n=1,2,..., be the sequence of coincidence moments in the
considered renewal streams It is easy to see that this is a renewal stream
with inter-renewal time distributed as the random variable, T It is obvious
that for i=1, 2 the renewal probabllmes

u(”—Pr(}'“'(k) 0, k=1,2,...,

satisfy the renewal equation
u(r) p(t)+ Z u(t.)_"p‘(;), I\fi;’l, 2’ o

We assume that the sum over an empty set of indices is equal to zero-
It is easy to note that ' ' )

(4) U ="Pr (2 (k) = 32 (k) = 0) = D 4
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and
k-1
Uk‘:- Pk+ Z Uk—ij'
j=1
Hence
P, =ulu® — Z u“' 2P, k=1,2,...

This formula enables us to evaluate the probabilities P,, k=1, 2, ...,
term by term. |

Since T(j) > |i|, from (1) and (3) we obtain the equalities

Pk (0) = lok, '

k
Z Py-j(i=J) (2)+1.kf’:‘2)+ Y Pi(i—pp?,

i= j=it+1
(i) =
-i—1
Y P (i+j)p O+ 1, pU+ Z Peoi(i+)p5Y,
j=1 Jj=—i+1
| i<0, k= —i, —i+1,
Pii)=0, i=+1, 42, ..., k=01, Lil=1,

1, i=k,
Iy = .
{0. i #k.
Equality (5) enables us to evaludte the probabilities Pk( () term by term.
System of equations may be reordered and solved recurrently. We have

P ()= P(lz’,

P (—1)=pi",

Py(1) =P (~1)pP,
P;(2) = P, (1) PP +p,

P-z(‘-‘l)- 2, (1) PV,

Py(=2) = P, (=) p"+ 4",
Ps(l)—Pz(“'”P(Z)'i'Pz('—z)P(Z)
P3(2) = P, (1) p{? + Py (= 1) p¥,
P3(3) = P, (2) p{?'+ Py () PP+ P,

Py(=1) = P, (1) p’ + P, (2) pV,

Py(-2)= Pz(-l)P‘“+P1(I)P(“

Ps,(—3)_“—.sz(-2)p“+P1( 1P+ ps),

Thig
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4. Special cases.

Case 1. In [2], the case X'V £ x» & x_ important for practical uses,
is considered. Now it is assumed that the random variables which generate
the renewal processes are identically distributed: Pr(X = k) =p,, k=1, 2, ..+
In this case the relations for the auxiliary random variables T(i) may be
simplified by a new definition:

T(0) =0,
TH=minjt>0: @) =y2)=0| XV =}, i>0.
Now, from the conditions of the model we get

(6) T2 T(X),

and the relations for the distributions of the random variables T(-) in terms
of the random variables are

(7) | T() £ min(, X)+ T’ (i — X)),

where X and T'(j), j =1, 2, ..., are mutually indepéndent, and T'(j) = T()-
These relations, in terms of distribution functions, form the system O
equations

PL0)=1p, k=0,1,...,
i=1 - k
P, () = Z P i (=) pj+ 1y pi+ Z Po_iG—0p;, k=ii+l1,...,

j=1 j=i+1

P,()=0, k=0,1,...,i—1,i=1,2,...

Also this system of equations may be -solved by the evaluation of

probabilities recurrently term by term. _
Case 2. If X® =12, are geometrically distributed, ie, P&

=pO(g"M L k=1,2,...,0<p® <1, ¢ = 1—p® i=1, 2, then using the

lack-of-memory property of the geometric distribution we may introduce 2
new definition

(1) E @y () —
X{P+T  otherwise,
where X{" and T’ are independent, and T’ iT
In this case Pr(y®(x ") = 0) = p®, whence
9 Pr(T=k) =P, =p@ gty
[

k —

% -1
+q2 ¥ PGV Py, k=12,
j=1

J
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The solution of (9) has the obvious form
CPe=ppR(1—p I pOR, k=12,

Case 3. Formula (8) holds in the more general case where {p{®} has a
tgﬁometric distribution and {p{"’} has a general one. Now formula (9) has the
orm

k-1
(10) P =p?p0+q? 3 PPy k=1,2,...
i=1
In this case it is easy to evaluate the generating function

I1(s) = f sk P,

k=1

as the function of

oP(s) =2 p
k=1
From (10) we get -

M (s) = p2 W (s)+ 2 ¢V () 11 (s),
and hepce ' '

= oy — PRI
i)=Y p?@?Y(e ey = -
'fiv‘o O = ey |
This is the generating function of the inter-event time rarified renewal
Stream (see [3], p. 174). From this we can obtain the distribution of the
fandom variable T and of the moments and also the limiting distributions
Under p» _, 0 may be proved.

5. Moments. In the case of renewal streams generated by the random
Va{lables defined on ‘the finite support, the moments ET", r =1, 2, ... are
te (see [7]). Now we prove that if the distributions of random variables

a _ . SO
X _) and X? are nonlattice and the expected values EX® = u{?, i = 1, 2, are
finite, then o

ay S =ET = u

~ Note for the proof that the coincidence stream is in this case also a

‘l_i‘anlatt‘i’Ce renewal stream. From' the renewal theory it follows that u®

S, i=1,2, and u, — 1/9, if n— co. Hence and from (4) we obtain (11).

for From the relation (3) or (7) it is possible to write the system of equations

' the moments of the random variables T(i). From (2) or (6) we have

?n“nffd‘iately‘ the éxpected values ET". We write now in detail the case of
“tically distributed renewal processes and an example.
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Put 3,(h=ET() and 3,() =ET(i), i=1,2, -«. In the case of
identically distributed processes. from (7) we get the system of equations

i—1 x
Sy = O+ Y $G(=Ppi+ Y S.G-ip;,
j= 1 ) :

(!2) i=i+1
i-1 A
320) = (i) + ) S i—=jpi+ ) (=1 p;,
i=1 =it
where
1 (i)=Y min(i, j)p;,
=1 .

f i—1 oD
pali) = min®(i, ) p;+2 ¥ j$(i~jpp+2 Y i%4—i)p.
Jj=1 i=1

j=i+1
It is easy to see that

j=1

I

% =ET=ET(X)=Y p,ET(). 9, =ET?=
WD : .

Example L. If p=1/n, i=1,2,....n, then

i(i+ 1)_+.j(’?\—lt),

1_11'(’) = - n

1, (iy = :11 i (-n +1 )(2n+1 —1)
and
() =n(n+1)+4i,
$,0) = dn2(nt 12t din(nt 1), i=1,2,...0n,
whence
Y =2tn+1?% 9, =inm+1)>.

6. Number of remewals up to ‘the coincidence. Now we consider th¢
random variable M = N(T)+ N(T),.eg., the number of renewals.in both
renewal :streams: up to the coincidence moment, Taking into account the
primary Matkov process. (y'(r),.¥P (1)), 1 2 0, it is easy tp note that M is the
number of entries- to the:set of states (0, k), (k, 0), k.=, 2, ...} until the
entry to the state (0, 0).. Now we define the univariate. Markov. chain #
which the absorption time in the state (0) has.the same distribution as: th#
random variable M.
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Let us characterize the state of one element at the moment of renewal of
the second element. Define the random chain as '

(13) Z, = X\ - x@r,
(14) Z,+ X" if Z, <0,

\Z,— XD if Z, >0,
Zrz+1 %
0 ifZ,=0,n=1,2,...,

Where X =12 n=1,2, ..., are mutually independent, and X! 4 xw,
Note that Z,, Z,, ... is a Markov chain with the absorbing state (0). We
have Z, <0 if the n-th renewal moment -occurs in the first renewal stream,
Z, >0 if the n-th renewal moment occurs in the second renewal stream. We
have Pr(z, =0) = Pr(M = n—1).

~ Let us introduce the following notation for the probability distributions
of the chain and for the transition probabilities: '

D,(k)=Pr(Z,=k), Dk D=Pt(Zy,=1|Z,=k.

From (13) we have

Di(k) =Pr(X{"-XP =k) = Z pPpM, k=0, +1, +2,...,
j=1

and from (14) we obtain
p}‘Z_)l, k=l,2,...,
Dk, I) = {pg'_',;, k=—1,-2...,
-1, k=0,1=0, +1, +2, ...,

Where p =0 for j<0,i=1, 2.
In the case XV £ X? £ X we define the Markov chain as

Z; = max(Xo, Xj)—min(X,, X,) = |Xo—X,],

|Zn_Xn+1| if Z,,>0,

Zn+1'=%0 if Z,=0,n=1,2,...,

Where x 0» X;, ... are mutually independent and distributed as X. In this
Case we have

Di(k)=Pr(Z, =k) =(2—10) Z Dibi+x, k=0,1,..,
i=1

i+ s k>0,l=0o0r 0<k<l,
Dk, )= {pk+l+pk—h 0<l<k,
1’(1, k=0,1=0, 1,...
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- The distribution of the random variable M can be found from the
general formulas

e &

Pr(M=n)= ¥ D, (kD" (k, 0),

k=1
where D™ (k, I) is the n-fold convolution of the matrix D(k, ).

7. Coincidences in the alternating processes. Let us consider two alter-
nating processes 2(f), t > 0, i = 1, 2, generated by the sequences of random

variables X', Y, j=1,2,...,i=1, 2. It is assumed that these random
variables are mutually mdependent and X9 2 X0, YLy xo 0,

Y® > 0. They generate two alternating processes (see [1] [6], p. 283)
(1) = Loif 2" <i< 23,
0 if ZZY, <1 <ZW\, n=0,1,
where Z{" =0, ZO' = X0+ YO+ ... + Y9, +X9 and zs:"' =Z0+ Y9,
n=1,2,...,i=1,2.

Let T be the moment of the first coincidence of zero in the considered
processes

T =inf{t > 0: a'V (1) = a® (1) = 0}.

The problem of coincidence of zero in two identically distributed alternating
processes is studied as the two-lift problem (see [4]).

Let us introduce the auxiliary random variables T(u), — oo <u < oo!
T(0) = | |
Tw) = {mf >0 () =a@(@) =0 XP =u, XP =0, u>0,
inf{t>0: aD(t) =P(1) =0| XV =0, XP = —u), u<O.
From the conditions of the model we get
T = min (XD, X@)4 T (X — X2),

where XD XP . T'(), —00 <v<o0, are mutually independent, and
T'(v) = T(v).

The distributions of the random variables T(u) satisfy the equations:

for u>0
u if u<y®@
T(u) < {u+ T (u— Y‘z’——X(Z’) if u>Y? Y4 X 5y,
YOLXOL T (u—Y@—X?)  if 4y YD, YO L XD <y,
for u <0 '
{—u if —u<Y®,
T(u) 4 —u+ T’Il(u+ Y(1)+X(l)) if —u> Y(1) Y4 x5 —u,
Y(1)+,X(1)+ T””(u+ Y(1)+X(1)) if —u > Y(l), Y(1)+X(1) < —U
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Where X©,. YO, T'(v),..., T""(v), —o0 <v <00, i=1,2, are mutually
independent, and T'(v) < ... N (v) £ T (v).

These equations are analogous to (3) and enable us to write the system
of equations for

Ru,)=Pr(Tw)>1t), —-o<u<ox,t=0.

We do not consider the general case and we pass to the special case.
Let XS x@ 2 x and YV L YD LY Then we may define new
uxiliary random variables as

T =0,
T =inf{t >0: aV(@O) =@ =0 XP =4, XP =0}, u>0.
From the conditions of the model we get

T< min(X', X")+ T’ (X' — X)),

and for ¥ >0 we obtain

u if u<y,
(15) T(u) = {u+ T (Y+ X —u) ifuzY, Y+ X >u,
Y+X+T'u—Y-X) ifu>Y, Y+X <u,

thilre X, X', X", Y, T'(v), T"(v), v>0, are mutually independent, and
X<x'2x T 102 TW.
From (15) we get the equation

Pr(T(u) >t) = Of Pr(u > t)dFy(y)+

+}( ? Pr(u+T(y+x—u) > t)dFy(x)+
0 u—-y .

[ Pr(y+x+T(u—y—3) > 1)dFy () dFy (),
0

Where Fy(x) = Pr(X < x) and Fy() = Pr(Y< y).
Since T(u) >u, we have R(u, ) =1 for t <u. For t >u we get the
lategrg) equation

u

R, 0= [( | ROy+x—u, t~1)dFy()+

0 u—y
u—y

+ [ Ru—y—x, t—y—x)dFy(x))dFy(y).
[¢)

B Equation (15) enables us to write the relations for the expected values
4) which have a form similar to that of the relations (12). We do not
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consider it because, similarly as before, no solutions suitable to practical uses
can be found here. Now we pass to dn important special-case.

Case 4. If the random’ variables X® are exponentially distributed with
parameters A” and the random variables Y are distributed without restric-
tions, then

(16) T =(',= mil‘l (X(I), X(Z))+1 x(l)spx(Z) 'I-i'l'" ].X{l)‘<x(2)- T2,
and

(17) Tl m]n(X(” Y(Z))+1X(]) y(2) T’

(18) T; = mm(x(l) YO+ Loy T

where X®, YV T (i=1,2), T' and T” are mutually independent, and
v d o d
a0 =T =
That enables us to evaluate the distributions- and moments.
8. Discrete alternating processes. Hitherto we did ot assume that . the

random variables which generate the alternating processes are integer-valued.

Now we assume this and also that they are identically distributed. Let us
write:

PrX =k =p®, Pr(Y=k=pP k=1,2,..,
Pr(T(u) k)= P(u, k), u=1,2,..., k=12,..

Since T(u) > u, we obtain from (15) the equalities

PO, k) = 1,

P(u, k)= 1, ngmz X P(]+l—-u k—u)pi® +
j=1 i=u~j+1
u_~j-l

+ Y Pu-j=ik=j—)p™)p,  k=u,u+1, ...,
i=1
Plu,k) =0, k=1,2,..,u=1,u=1,2,...

Also this system of equations may be solved recurrently by the evalu@
tion of the probabilities term by term.

Case 5. Let us assume,that p{® = pgt~1,% = 1, 2, ... Then analogously
to -equations (16)}-(18) we have

T = min(X, X4 1 up T, T, 2 rmn(X )+ 1x.y T,

where X', X YTy and . T' are mutuallv independent, and. X' < . X £ X,
T <7
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Let us consider the equation
T, £ min(X, Y)+ Leay (min(X', X))+ Ix g T5),

where T; £ T,.
We have

k=1

(19 Pr(Ty=k =+ Y BPr(Ty =k=j), k=12,
i=1

Where
% =Pr(X =k, Y2 k)+Pr(Y+X =k, X=X X>Y),
B; = Pr(Y+min(X, X"y =j, X"# X" X >7Y).

In this case, analogously to (10), it is easy to evaluate the generating
function’

()= Y sPr(Ty =k

k=1

as the function of
Ais)= ), sz and B(s) = Z & .
k=1 k=1

From (19) we have

Al
T 1-B(s)

I, (s)

For the expected values we have
ET = Emin(X’, X")+Pr(X' # X")ET,,
ET, = Emin(X, Y)+Pr(X > Y)ET.

9. Limiting properties. The analysis of some numerical experiments
Suggests that in the series of distributions {p{,, k=1,2,...,,n=1,2, .., if
Suppid. -0 as n— 0, i=1 and (or) i =2, then the distribution of the
Tandom variable 7 may be estimated by the exponential distribution. Note
that in Example 1 we have ET2/(ET)? = 9,/9% — 2 as n — oo, which confirms
the limit exponential conjecture. Under the assumption of Case 3 the
pro_blem is solved by Rényi’s theorem (see [3], p. 177) on the convergence of
rarified renewal streams to the Poisson stream. The problem of exponential
aSymptoticity in the two-lift problem was considered, among others, by

\aplan [4]. It is an open problem to describe the class of limiting distribu-
ions and the domain of attraction in general coincidence streams.



180 I. Kopociniska and B. Kopocinski
References

[1] D. R. Cox, Renewal theory, New York 1963.

[2] J. M. Czaplicki and B. Kopocinski, On reliability of certain elementary safety system,
Microelectronics and Reliability 5 (2) (1986), pp. 1-3.

[3] B. W. Gniedenko and I. N. Kowalenko, Wstep do teorii obslugi masowej (An muoduc-
tion to queueing theory), Warszawa 1971.

[4] N. L.Kaplan, Another look at the two-lift problem, J. Appl. Probab. 18 (1981), pp. 697-706.

[5] J. F.C. Kingman, An approach to the study of Markov processes, J. Roy. Statist. Soc. B 28
(1966), pp. 417-447.

[6] B. Kopocinski, Zarys teorii odnowy i niezawodnosci (An mtroducnon to renewal theory
and reliability), Warszawa 1973,

[71 M. F. Neuts, Probability distributions of a phase type, pp. 173—206 in: Liber Amicorum
Professor Emeritus Dr. H. Florin, Katolicke Universiteit Leuven, Leuven 1975.

MATHEMATICAL INSTITUTE

UNIYERSITY OF WROCLAW
50-384 WROCLAW

Received on 1985.10.31



