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Concerning the order approximation
of periodic continuous functions
by trigonometric interpolation polynomials II

by A. K. VArMA (Gainesville, Florida)

Abetract. In earlier work [2] we proved that there exists a unique trigonometric
interpolation polynomial R, (x) satisfying (1.1) and (1.2). This interpolation process
is called the (0, 2, 3) case. It was also shown that I, (x) converges uniformly to f(x)
on the real line provided f(x) ¢ lipa and there are some restraints on by, at e, a8 shown
in Theorem 1. In this work, Theorem 2, and Theorem 3 examine the question of upper
and lower estimates of ||f— R, (f)|l in the uniform norm. As a corollary of these the-
orcms, it follows that for a uuiform approximation of R, (x) to f(z), the lipa class
cannot be replaced by f(z) e can.

Let

Lo

wk
(1.1) Ly = T, k= u,1,...,n—1.

Let R,(z) be the unique trigonometric polynomial determined by
the interpolatory conditions

(1.2) Rn(mkn) = f( ‘r'kn)r R:,: (@) = bku, R::(“’k:;) = Chny

c={0,1,...,n—1.

When 2 is even (= 2m) we require the trigonometric polynomial R, (x)
to have the form
Im-—1
(1.3) do+ 2 (d;cosix + e;5in i) - dy,, cos 3ma,
i=1
but when % is odd (= 2m+1) we require it to have the form
am+1
(1.4) do-+ Z (d;cosir + e;sinde).
1=l
In our earlier work [2] we have considered the problem of existence,
uniqueness, and explicit representation, and the problem of uniform
convergence of R, (x) to f(x) on the real line. The main theorem of [2] is
as follows.
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TuroREM 1. Let f(@) be a 2n periodic conlinuous function with f(x)
e Lipa, a > 0; then the sequence {R,(x)} defined by (1.2) converges uniformly
to f(x) on the real line provided -

7 nt i 0 n? -
by =0 (logu)’ Crn = (logfn) for k=0,1,...,n—1.

Concerning the above theorem, it is natural to ask the following
question: to what extent is the above theorem the best possible ? Can
the sequence {R,(r)} given by (1.2) converge uniformly to f(x) for only
2x periodic continuous funetions on the real line? We will also examine
the question of lower and upper estimates of |f—R,(f)| in a uniform
norm for a certain class of continuous periodic funetions. The upper
estimate of ||[f—R,(f)] is given by

THEOREM 2. Leét wy(t, f) be the second modulus of continuity of f(x).
Then we have

' 1
(1.5) | R, (2) —f(2)] = 0(10gn-wz(;,f))
provided
2y (1 . 1
(1.6) |bpy] = B2, ﬁ’ fh |ernl = NP, a’ fl-

1
CoROLLARY. Let f(x) satisfy the condition lim logn w, (?—, f ) = 0.

1nt—00 J
Then we have |R,(2)—f(x)] = o(1).
Thus Theorem 1 is a special case of Theorem 2.
Let us denote by ¢(p) the clas of all 2n periodiec continuous functions
for which

(1.7) wy(t, f) = Ofg(2)).
Let ¢(f) have the following properties:
(i) @@)>0 for t>0, p(0) =0, p(T) > (1), if T'>1,
(ii) @(?) is continuouns for ¢ > 0,

2

(1.8)  (lii) (tS is monotonic increasing for ¢ > 0,
QJ
iv)  1lim —_—o.
( -0+ (1)

TurOREM 3. There erists a 2n periodic continuous function f belonging
to c(g) for which

1
(1.9) |R, (=) —f(=)| > clogne (ﬁ) for m = ny, Ny, ...,
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where 0 <y <Ny < ..., 0 being always an odd positive integer. Further,
4t 18 assumed that by, and ¢, as given by 1.2 are all zero.

The proof of Theorem 2 depends on

THEOREM 4 (Stetkin [3]). Let k be a positive integer; then for a given
Se ey we can find a trigonometric polynomial t,(x) of order n at most such
that

(1.10) If =t = O(wk (;1;, f))
and
(1.11) 18890 = O(ﬂ"wk (%,f))

Here wy (6, f) is the modulus of smoothness of order k of f(x).

2. Preliminaries. From our earlier work [2] we have the following
results.

For n odd (= 2m+1), R,(x) satisfying (1.2) and of the form (1.4)
is given by

n—1 n—1 n—1
(21)  Ra(@) = D [ @) 02— i)+ D) bl (B —Bpe) + ) Cn (28— Tyn)y
k=0 k=0 k=0
where
m am+1 .
1 44 .. T (Bn—25) ]
2.2 = —= » 8
(2:2)  wio) n‘[; n®— 30 Sln"”+j_m+1 m—3m—gr
J

m+-1

m .
1 n*43j2 . 1 n*+3(3n—2j5)% ]
2. z) = — jda — = ! cosijx
(2.3)  o(=) 71,3[1_1_212:4;,2—3_1'-’005‘” P2 il 3 ) cosjix

and

m
1 2 (n2—j2
2.4 @) =-|14— cosjar —

@4 @) fn[ +nz 5.=1' n?—3j° 0sJ4

Im—+1 e o 1o
1 N (=) (2n .]) cosjm].
0?2 n:—3(n—j)*
J=m+-1

We need also the following estimates, as obtained in [2].
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The following estimates are valid:

n-1
(2.5) > ho(@—u,)l < ¢;nlogn,
ket
n—1
(2.6) D) I0(@—21)] < en™*logn,
k=0
n—1
(2.7) 2 lu(z—ap,)| < cslogn.
k=0
Here ¢, ¢, ¢; are all positive constants independent of » and .
From the uniqueness theorem it follows that for an arbitrary trigo-
nometric polynomial of order » we have

n-—1 n—1
(2.8) (@) = D) tl@)u(@— D) + D) 1y (B4) 0 (35— 23 +
k=0 k=0
7n—1
+ Zt;l,”(mkn)w(m—mlm)a
k=0
-1
(2.9) 1= ﬁ?—; U(® — Xy, -

Now, we prove the following lemma.
Lenvua 2.1, There exists a positive constant ¢, independent of n and x

such that
n—1

(2.10) D) lu(m =)l > elogn,  n >,
k=0 '
n being an odd positive inleger.
We sei
n—17)2(2n —q)2
2.13) p, — (B=irEn—j)
n?—3(n—j)*
and observe that
3m; 1 2m4-1 3m+1
D Beosi(n—m,) = Y+ Y
J=m+1 F=m+1 jmntl
m
= — D (Buj+ Buis) 008 (T — T1).
j=1

From (2.4) and the above it follows that

2 j:wn“+2j"‘—n2j2

i n?— 353 o8 j (-n-—a:,m)].

(212)  w(n—a,) = %[1 +

i=
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Let us write

nt 4 25 — nj2

2.13 = -
( ) ] nt—-3jr

and express u(w—&y,) in terms of the Fejer kernel at ¥ = =. We seb

(2.14) Lg(n) =t = 1+;Z(j-—i)cosi(n—mk,,)

and observe the known properties of the Fejer kernel

j(n_wkn) 2

n=—1 1 sin Py
2.15 i = t — - __“_.__.
( ) ,%‘ e = Ny Uik j i,

2
and _
(2.16) (J+Dbe— 20tk + (0 — Doy = 2c08] (7 — &)
On using (2.16) we obtain
1 m

(2.17) wr—in) = 5| D (p— 20, 1) Pyt

p=1
+vm ('m +1) tm+1,k —"m41 "ntm.,k] .
From (2.14) it follows that

m
(2.18) (M 1) b1 p—Mbp s = L+2 D 083 (70— Byn)
feml
sin (m + ) (7 — o)
sinn—m""

From (2.13) it follows that

(2'19) |vm.| 2 W"zs l'pm m+l] 5 C5 Ty
and
(2-20) va_l_zvp+vp+ll < 06, p == 1, 2, ceay n.

On using (2.17)-(2.18) it follows that

j
U (T — Ly ) d—[ \ (’23 1= 2+ Vp) Pyt

p=1

m
+ i (1 + 2 2 008’1:(1! - wkn)) + ""'tm,k("'m - v1n+l)] .

tml
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Therefore on using (2.15), (2.19) and (2.20) we have

. n
n-—1 | n-1|81N > (Tl: — :K?L.,,) m
», M A
w(n—m,) = — y —_—— == vh' =2y v, PN —
ful )l > nd Li| | m—a, pa Ly Tt T p+1|P
k=0 k=0 SIDT =1
.
man ’ > 13 SIn o (7=} |, m
— 5 Um = V1) 2 — 2, ——0Cs D—Cs-
1o 0 e . T — Ty, n? Z
= sl 3 p=1

It is well known that

. n
n—1 Bln-é(ﬂ:—w,m)

| = e;nlogn,
W—wkn

2

k=0 | gsin

and we finally obtain

n—1
Z [ (7 —@,)| 2 cylogn —c,— ¢ = ¢ logn, 0= .
kw=Q

This proves the lemma.

3. Proof of Theorem 2. On using Stelkin’s theorem (for &t =2 in
Theorem 4) for given f(x)e ¢,., we can find a trigonometric polynomial
t,(2) of order n at most such that

(3.1) lf(@) —t,(2)] =0 (wz(;l;l, f))
and

tr 2 1
(3.2) It = O ('n W, (fﬁ’ f))

On using the Bernstein inequality for trigonometric polynomial
we obtain

1 1
(3'3) ”tn ” =0 ("7’3(02 (ﬁ’ f)) .
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From (2.1) and (2.8) we obtain
Ry (2) —flz) = Ry(2) —1, () +1,(x) —f(2)

n-1 n—1
= D {(F(@in) =~ ta(@a)) (@ — @) + Y by (2 — 23) +
k=0 =0
n—1 n—1
+ 2 Crn (‘v_‘tku) - 2 ti: (mkn)”(a:_wkn) -
k=0 k=0

k-1
— D (B1a) 0 (8 — ) + [t (2) — F ()
k=0

= I1+12+IS+I¢+15+I6'

From (3.1) and (2.7) we obtain

1 .
|I,]| =0 ((02 (;;) logfn.) .

From (1.6) and (2.6) we have

n—1
. (1 1
Iyl = n-wg(?—b) 2 [v (2 —ap,)] = O(w”(»)-z,) logn).
-y
Similarly from (1.6) and (2.5) we obtain
1 n—1 1
[L5] = nBw, (ﬁ’ f) ’;: fw(x—a,)] = O (wa (ﬁ) Iogn) .

From (3.2} and (2.6) we have

n—1
1 1
1| = "Laf”e(;;a f) E [v(2 —y,)| = 0(")2 (ﬁs f) logn)'

k=0
Similarly from (3.3) and (2.5) we obtain

n—1
1 1
Il = n%a(a, f) ,,_Eo lw(z—a,)| = 0(0)2(7_1,’ f)logn).

Lastly on using (3.1) we have

7 = o(wz o f))

Combining all these results we have

| R,y (@) —f(2)] = O (IOgﬂwz(;“’ f)): n> 1.
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This proves Theorem 2.

The proof of Theorem 3 is a direct application of a recent result of
Kis and Vertesi [1] and Lemma 2.1.

Let #;,, » = 1,2, ..., be an infinite point system such that 0 <z,
< 2w, we define

Lu(fy @) = D (@) Pra(®)y  Au(@) = D (Poel@)),

where P, (%) are 2= periodic continuous functions.
TamoREM 5 (Kis and Vertesi). If —oo < z, < co and limA,(z,) # 1,

N0

then there exist a f(z)e c(p) and integers 0 < ny < 0y < ... such that

If(-’”o) _'Lnk(f) @o)| > lnk(.mo)q’(dnk)
for k= 1L2... Here d, = min (2, ,— %,)-
Proof of Theorem 3. We choose P, (%) = 4(x—a,,), To = 7,
d, = 2x/n, n =1, 3,5, ... and observe from Lemma 2.1 that

n—1
A (m) = 2 lu(r—a,,)| > clogn.

k=0

Thus, on applying Theorem 5 we have the conclusion of Theorem 3.
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