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1. Let C™ denote the space of all m-tuples z = (2, 25, ...y 2,) of
" complex numbers. Let G = C™ be given by

¢=][]a,
i=1

where each @; constitutes an open angle of measure 6; in the z;-plane
having its vertex at C;. Such a set G is called an open polyangle of coor-
dinates (6,, 0,, ..., 0,) having its vertex at ¢ = (0, C,, ..., 0,,). If the
angles in each of the z;-planes are closed, then the corresponding point
set is said. to be a closed polyangle If each component set G, is a ray emana.-

ting from a certain point in the z;-plane, then the product set G = ” G

is called a polyray. =1
In this paper we show the Phragmén-Lindelof principle can be ex-

tended to the case of a function of several complex variables in a poly-

angle.
The maximum principle (see {3], p. 6) states that:
(1) if f(2) = f(21y 22y «.+y #,) is & holomorphic function on an open

set U in C™, and
(ii) if for every point y of dU, the boundary of U (which has to

include the point at infinity of (™, when U is not relatively compact),
lim sup |f(2)| < M,

z->y zeU

then [f(2)| < M in U and if |f(z,)| = M for a point 2, in U, then f(z) = f(2,)
on the connected component of U containing z,.

In particular, when the open set U is a product set, then the boundary
of U can be replaced by the distinguished boundary.

2. Taking the open set U to be a polyangle, we are going to show
how the second condition can be relaxed.

THEOREM 1. Let f(2) be a holomorphic function in an open polyangle G
of coordindtes (a,m, ay @, ..., a,n) such that 0 < a; <2 and Za, = a and
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let I' be the boundary of G. Suppose that

(i) for every finite point {eI', limsup |f(2)| < M < oo,
>
os . - lnln M(rl’TZ’lol’rm)
ii liminf ' <1
( ) T1T9reers Top—>00 ]n(rl rz e r’”l) /a’
where M (ryy 7oy ..., 7,) denotes the maximum of |f(z)| on the product set

m
n{z«;: 2| = 7y 2;¢G}.

i=1

Then |f(2)| < M for all z¢G, and, moreover, if |f(2,) = M for some
point z, of @, then f(2) = f(7).

Proof. Without loss of generality, we assume the vertex to be the
origin (0,0, ...,0) and the coordinate-angles of the polyangle to be the
sectors |args;| < doym, j =1, 2,...,m.

From (ii) it follows that

(1) |f(2)] < exp {|2,25...2,|%},
01 < 1/a, for |z;| =7y, 2,¢G;, 1 <P < m,

where 7, - oo as n — oo (1).
Congider the function

(2) F(2) = f(z)exp{—e(212z...20)},

where ¢ > 0 and g, < ¢, < 1/a, choosing those branches of 222 which have
positive values for positive real z; (for all ¢ =1,2,...,m).

Let @,, be the sector

G, = {zflargz| < daym, |7 < 74,}

in the z;-plane and let

Let ¢ = (&yy Loy - -5 &) be a point of the distinguished boundary of G,,.
First suppose that for some value of ¢, ; belongs to one of the line
segments of the boundary of @,,, and

Cffg"n, j=1,2,--.,i—1,'i+1,-..,m.

(1) More rigorously, condition (ii) in the statement of the theorem could be
replaced by this condition,
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In this case it follows from (i) that
(3) limsup|F(z)| < M

7 el
simce

m
Qz Z 0{ < .7'6/2 -
i=1

Next suppose that ¢ is such that every ¢, belongs to the open circular
arc |z;| = r;,. For such a boundary point it follows from (1) that F(z) — 0
as |2;] — oo through the sequences of values {r;,}, |%;| =7, t =1, 2, ..., m.
Hence also in this case
(4) limsup |F(2)| < M.

2L oGy
Therefore, by (3), (4) and by [3], p. 6, we get
[F(z)| <M, for all ze@,,.

Letting ¢ - 0, we get |f(2)] < M for all z¢@G, and accordingly for
all z belonging to the polyangle.

It again follows from [3] (p. 6) that if |f(z,)] = M for a point 2z,¢@,
then f(2) = f(z). '

Remark 1. We can very well improve the theorem by replacing
the boundary of the polyangle (in the theorem) by its distinguished
boundary, in which case the proof retains the same approach.

Remark 2. Condition (ii) can be replaced by

liming ]n—h%f@ < 1/a,
where
M(r) max |f(2)|.

m
 igil=r
1=1

THEOREM 2. Let f(2) - a, as 2,,...,%2, — oo along every polyray
A < T, the distinguished boundary of the open polyangle G, and let f(z) be
holomorphic and bounded inside the polyangle G. Then f(z) — a, uniformly
in the polyangle.

The proof is almost the same as in the case of one complex variable
and is therefore omitted.

THEOREM 3. Theorem 1 remains true if condition (ii) of the theorem
is replaced by the folloving less stringent condition:

(ii') lim inf In M(ry,725 ceey Tm)

T1sTg) - ens Ty >0 (7’1 g ... Tm)lla

<0.



166 M. Sen

Proof. Write p(z) = f(2) exp{—ezl/®2}/* ... 2}/°}, the branches of 2z}
chosen to be positive valued for positive real z; . )

Then ¢(zr) -0 as x; > oo (i =1,2,...,m) and consequently ¢(x)
has an upper bound, say M'.

Let each component angle G; of the open polyangle G be bisected by
the positive real axis X; of the respective component plane into two
open angles G; and @; so that

6 =G u@ uX,.

We consider the two polyangles

m

G =HG; and G’ =ﬁag’

=1 i=1

and apply Theorem 1 to the function ¢(z) for each of them separately;
the sum of the coordinates of each polyangle is 4za and thus we need
only verify that inequalities (i) and (1) hold for ¢(2) in place of f(2)
and for some g; < 2/a. Then we see that in the polyangle G,

lp (2)] < max(M, M').

Since the value M’ is attained at a point inside @, it follows that
lp(2)] < M for all 2¢@, as asserted.

Remark 3. Condition (ii') replaced by

M

timint 200 <,

" 7

2, l=roe

also serves the purpose.
m
THEOREM 4. Let G = [[G;, where G, is an angle in the z,-plane of

=1

measure ax (0 < a<2) and G; (1 =2,3,...,m) is an open connected set
in the z-plane containing the point at infinity of the z;-plane. Let I' be the
boundary of G.

Let f(z) be a holomorphic function in G and let f(2) satisfy the following
conditions:

(1) for every finite point (eI, limsup|f(z) < M < oo,
z—{
M 1
(if) liminf...liminf {liminf Inin M(rs, 72, ) ) } <t
>0 rg>oo ry—voo Inr, a

Then |f(2)| < M for all zeG and, moreover, if |f(z)| = M for soma
point zye@, then f(2) = f(2,).
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Proof. From (ii) it follows that for any sufficiently large values
of ry,74,...,7,, and for a sequence {r,,} of values of r,, 7, > oo, as
n — 00

If(2)] < exp {[2,[*}

holds for some g, < 1/a.
Taking F(z) the same as before and proceeding essentially in the
same way, we obtain the desired result.

Note. The above result is independent of the order of limits outside
the brackets.

2.1. By taking the component sets G; to be strips, a polystrip can be
defined and the Phragmén-Lindelof principle for a strip can be extended
to the case of several complex variables.

I express my gratitude to Prof. S. K. Bose, Head of the department
of Pure Mathematics, Calcutta University, for his constant guidance in
the preparation of this paper.
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