On convergence of iterates of the Frobenius-Perron operator for expanding mappings

by Marian Jabłoński (Kraków)

Abstract. It is shown that the sequence $P_{\tau}^{n} f$ of iterates of the Frobenius-Perron operator is convergent to its limit as rapidly as the geometric sequence.

- 1. Introduction. Lasota [4] and Jabłoński [1] have shown that the sequence $P_{\tau}^n f$ of iterates of the Frobenius-Perron operator $P_{\tau} \colon L^1 \to L^1$ given by an expanding transformation $\tau \colon M \to M$ of a differentiable manifold into itself is uniformly convergent for a certain class of functions $f \colon M \to R$. A similar theorem has also been stated by Krzyżewski [2]. But none of the theorems given by the above authors says how rapidly $P_{\tau}^n f$ is convergent. The purpose of this note is to estimate the rate of convergence of the sequence $P_{\tau}^n f$; namely, we shall show that $P_{\tau}^n f$ is convergent to its limit as rapidly as the geometric sequence.
- 2. The convergence theorem. Let (X, Σ, μ) be a measure space with a σ -finite measure μ . Denote by $L^1(X, \Sigma, \mu)$ the space of all integrable functions defined on X.

We say that a measurable transformation $\tau: X \to X$ is non-singular if $\mu(\tau^{-1}(A)) = 0$ whenever $\mu(A) = 0$ for any measurable set A.

For non-singular $\tau: X \to X$ we define the Frobenius-Perron operator $P_{\tau}: L^1 \to L^1$ by the formula

$$\int\limits_A P_\tau \, f d\mu = \int\limits_{\tau^{-1}(A)} f d\mu$$

which is valid for each measurable set $A \subset X$. It is well known that the operator P_{τ} is linear and satisfies the following conditions:

- (a) P_{τ} is positive: $f \ge 0 \Rightarrow P_{\tau} f \ge 0$,
- (b) P_r preserves integrals:

$$\int_{X} P_{\tau} f d\mu = \int_{X} f d\mu, \quad f \in L^{1},$$

(c) $P_{\tau^k} = P_{\tau}^k \ (\tau^k$ denotes the *n*-th iterate of τ),

(d) $P_{\tau}f = f$ if and only if the measure $dv = fd\mu$ is invariant under τ , i.e., $v(\tau^{-1}(A)) = v(A)$ for each measurable A.

We shall not make a distinction between functions $f: X \to R$ defined on X and functions $f: X \to R$ taken as the elements of the space L^1 . This difference will be clear from the context.

A transformation τ : $[0, 1] \rightarrow [0, 1]$ will be called *piecewise* C^2 if there exists a partition $0 = a_0 < a_1 < ... < a_p = 1$ of the unit interval such that for each integer i (i = 1, 2, ..., p) the restriction τ_i of τ to the open interval (a_{i-1}, a_i) is a C^2 function which can be extended to the closed interval $[a_{i-1}, a_i]$ as a C^2 function. The transformation τ need not be continuous at the points a_i .

Lasota and Yorke [5] have shown that for any τ : $[0, 1] \rightarrow [0, 1]$ piecewise C^2 with $\inf |\tau'(x)| > 1$ there exists an absolutely continuous probabilistic measure invariant under τ , and the density of any such measure has bounded variation. Moreover, it is well known [3], [6] that if a transformation τ : $[0, 1] \rightarrow [0, 1]$ is piecewise C^2 with $\inf |\tau'(x)| > 1$ and there exists a partition $0 = a_0 < a_1 < \ldots < a_p = 1$ of the unit interval such that for each integer i ($i = 1, 2, \ldots, p$) the restriction τ_i of τ to the open interval (a_{i-1}, a_i) is a C^2 function which can be extended to the closed interval $[a_{i-1}, a_i]$ as a C^2 bijective map of $[a_{i-1}, a_i]$ onto [0, 1], then the absolutely continuous measure invariant under τ is unique.

Let
$$\bigvee_{a}^{b} f$$
 denote the variation of f over the interval $[a, b]$.

THEOREM. Let the transformation $\tau: [0, 1] \rightarrow [0, 1]$ be a piecewise C^2 function such that

(i) there exists a partition $0 = a_0 < a_1 < ... < a_p = 1$ of the unit interval such that for each integer i (i = 1, 2, ..., p) the restriction τ_i of τ to the open interval (a_{i-1}, a_i) is a C^2 function which can be extended to the closed interval $[a_{i-1}, a_i]$ as a C^2 bijective map of $[a_{i-1}, a_i]$ onto [0, 1],

(ii)
$$s = \sup_{i,x} |(\tau_i^{-1}(x))'| + \sup_{i,x} |(\tau_i^{-1}(x))''| \left(\inf_{i,x} |(\tau_i^{-1}(x))'|\right)^{-1} < 1.$$

Then for any $f \ge 0$ with bounded variation

$$|(P_{\tau}^n f)(x) - ||f|| f_0(x)| \le s^n (\bigvee_{i=0}^1 f + ||f|| \bigvee_{i=0}^1 f_0),$$

where f_0 is the density of the probabilistic measure invariant under τ .

Proof. Set $\varphi_i = \tau_i^{-1}$. A simple computation shows that the Frobenius-Perron operator corresponding to τ may be written in the form

$$(P_{\tau}f)(x) = \sum_{i=1}^{p} f(\varphi_{i}(x))|\varphi'_{i}(x)|.$$

By its very definition the operator P_{τ} is a mapping from L^1 into L^1 , but the last formula enables us to consider P_{τ} as a map from the space of functions defined on [0, 1] into itself.

Let f be a function with bounded variation such that $\int_{0}^{1} f dx = 0$. We have

$$\bigvee_{0}^{1} P_{\tau} f \leqslant \sum_{i=1}^{p} \bigvee_{0}^{1} f(\varphi_{i}) |\varphi_{i}'| = \sum_{i=1}^{p} \int_{0}^{1} |d(f(\varphi_{i}) |\varphi_{i}'|)|
\leqslant \sum_{i=1}^{p} \int_{0}^{1} |f(\varphi_{i})| |\varphi_{i}''| dx + \sum_{i=1}^{p} \int_{0}^{1} |\varphi_{i}'| |df(\varphi_{i})|
\leqslant \sum_{i=1}^{p} K \int_{0}^{1} |f(\varphi_{i})| |\varphi_{i}'| dx + \sup_{x,i} |\varphi_{i}'| \sum_{i=1}^{p} \int_{0}^{1} |df(\varphi_{i})|
= K \sum_{i=1}^{p} \int_{a_{i-1}}^{a_{i}} |f| dx + (\sup_{i,x} |\varphi_{i}'|) \sum_{i=1}^{p} \int_{a_{i-1}}^{a_{i}} df
= K \int_{0}^{1} |f| dx + \sup_{i,x} |\varphi_{i}'| \bigvee_{0}^{1} f,$$

where $K = \sup_{i,x} |\varphi_i''|/(\inf_{i,x} |\varphi_i'|)$. Therefore, since $\int_0^1 |f| dx \le \bigvee_0^1 f$ (recall that $\int_0^1 f dx = 0$) we obtain

$$\bigvee_{0}^{1} P_{\tau} f \leqslant s \bigvee_{0}^{1} f$$

and, consequently, by induction

$$(1) \qquad \qquad \bigvee_{n=1}^{\infty} P_{\tau}^{n} f \leqslant s^{n} \bigvee_{n=1}^{\infty} f.$$

Now, let $f \ge 0$ be a function with bounded variation. Since

$$\int_{0}^{1} (f - ||f|| f_0) dx = 0,$$

from (1) we obtain

$$\bigvee_{0}^{1} P_{\tau}^{n}(f - ||f|| f_{0}) \leq s^{n} (\bigvee_{0}^{1} f + ||f|| \bigvee_{0}^{1} f_{0}).$$

Since $P_{\tau} f_0 = f_0$, the last inequality gives the conclusion of the theorem.

References

[1] M. Jabłoński, On convergence of iterates of the Frobenius-Perron operator, Univ. lagell. Acta Math. 24 (1984), 7-13.

- [2] K. Krzyżewski, On expanding mappings, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 19 (1971), 23-24.
- [3] and W. Szlenk, On invariant measures for expanding differentiable mappings, Studia Math. 33 (1969), 83–92.
- [4] A. Lasota, A fixed point theorem and its application in ergodic theory, Tôhuku Math. J. 32 (1980), 567-575.
- [5] and J. A. Yorke, On the existence of invariant measures for piecewise monotonic transformations, Trans. Amer. Math. Soc. 186 (1973), 481-488.
- [6] V. A. Rohlin, Exact endomorphisms of Lebesgue spaces (in Russian), Izv. Akad. Nauk SSSR Ser. Mat. 25 (1961), 499-530.

Reçu par la Rédaction le 1980.05.02