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The n-point-invariants of the projective line and
cross-ratios of n-tuples

by WALTER BENZ (Waterloo, Ontario)

Consider the projective group I'(S) of the projective line 8" = § U {0}
over the sfield 8. Denote by [n; 8], where n is a positive integer, the
set of all ordered n-tuples (4,,4,,...,4,), where A4,, 4,,..., 4, are
distinct points of 8'. If I =@ is a set and w a mapping of [n; S] in I,

w: [n; 8] =1,

we will call the pair (I, o) a n-point-invariant of I'(8) iff for all ye I'(8)
and for all (4,, 4,,..., 4;)e [n; 8] the equation

(Aqr AL revy A;’z)m = (Al:v Az’ sery An)w

holds, where — generally spoken — the image of the object A under
the mapping A is denoted by A%

If (I, w), (I'y 0’) are n-point-invariants we will call them equivalent
in case there is a bijection

a: [n; 81° — [n; 81"
such that
[(Au Az’ crry An)w]a = (An Azy seey -An)w'

for all (4,, 4,,..., A,)e [n; S].

This relation is an equivalence relation on the class of »-point-in-
variants of I'(S). .

Denote by 2 the set of all I'(S)-orbits on [#; 8] and by ¢ the mapping,
which associates to every element of [n; 8] its orbit. Then, of course,
all n-point-invariants are given by (I, o-u), where I # @ is an arbitrary
set and u: X — I an arbitrary mapping.

Up to equivalence there is just one 1-point-invariant because I'(S)
operates transitively on [1; 8]. Moreover, up to equivalence there is
just one 2-point-invariant and just one 3-point-invariant. If S denotes
the field C of complex numbers, so S’ the completed complex plane, we
get at once well-known geometric examples of 4-point-invariants, which
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are not equivalent. For instance (I,,w,), » =1,2,3,4 are pairwise
non-equivalent, where

I, =1, ={0,1}, I, = torus group mod=x,I, =C
and

(A,, A;, A3, A,)”* =1 (resp. = 0) in case (4,, A4,, A5, A;)e[4; 8] is
cocircular, i.e. on a common circle (resp. non-cocircular);

(A4, Ayy Agy A)® =1 (resp. = 0) in case 4,, 4,, A3, A, is harmonic
(non-harmonic);

(4,, 4,, A5, A,)”® = angle modn, which leads around A4, in the
positive sense (defined by an indikatrix on the sphere) from the circle
through 4,, 4,, A, to the circle through A4,, 4,, A, for (4,, 4,, A4, A,)¢
€ [4; 8];

(An Az, Aay A4)w“ = l

4, A
' ] = DV (A, A, 4q, Ay).

4, A,

All 4-point-invariants have been characterized by Aczél, Golgb,
Kuczma, Siwek in the real case, [1]; in [2] the same has been done for
all 4-point-invariants in the sfield (skew-field) case. S. Topa solves in [4]
a more general functional equation for the field case than that involved
in the question of characterizing all 4-point-invariants.

In the present note we would like to characterize all n-point-invariants,
n > 4, in the case of an arbitrary sfield. Let m be equal to » —3. We are
interested in all ordered m-tuples (a,, a,, ..., a,,) of elements «,¢ S\{0, 1}.
We define (ay, ..., @) ~ (B1) .-, Bm) iff there exists ae8* = S\{0}
with 8, = aa,a™* for all » =1, 2,..., m. This is an equivalence relation.
Denote by {{a,, ..., a,)) the equivalence class of (a,, ..., a,) and by E,,
the set

‘<(a1’ ooy @)D @y ooey ape SN{0, 1}' g

If (Py,P,, Py, P,)e[4; 8] we define
‘Pl .Pz 1 -1
= (Pz_Pa) (PI_P3) (P1—P4) (Pz_Pd)y
P, Py

where in case oo occurs in {P,, P,, P;, P,} we just cancel both expressions
(P,—P,) containing oo, so for instance

OOPZ
Py P,

Because of (P,, Py, P;, P,)e [4; 8] we have always

P, P,
e S\{0, 1}.
P, Py

) = (Pz"Pa)_l(Pz"P4)~
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By | A, Aa]
Ay oy A, A,

we understand the element

< (A1 Az) (A1 Az) (A1 Az) >

A, A,1'\A, 4,]" 777 \4, A4,

of E,_, for (A4,, 4,,..., A,)e[n; 8], n = 4. (For n =4 we get the well-
known cross rations in the sfield case.)

Then the following theorem is true:

THEOREM. Let n >4 be an integer. Consider an arbitrary mon-emply
set I, and an arbitrary mapping

2: E, ,—~>1I.
Define
(4,, 4 4,)° 4 A4
PRI T Ay ey 4, A
for (A, Ay, ..., A)e[n; 8). Then (I, ) is a n-point-invariant. Moreower,

there are mo other n-point-invariants.

Remark. The content of this theorem is in other words the statement,
that

(Ayyeey Ap)y (Byyoony By)e[n; 8]
belong to the same I'(S)-orbit iff their ¢‘‘generalized cross ratios’

P T P
are equal.

In this connection we would like to emphasize that

A, 4, B, B,
= y v=4,...,m,
'AV .A.a B’ Ba
is not sufficient in general for having (4,,...,4,), (B, ..., B,) in the
same orbit. Nevertheless, it is sufficient of course, in case § is a field.
For the sfield case we have the following counter example:

Let S be the set of quaternions and consider (oo, 0,1, %, 2¢), (o0, 0,
1, —4,2i)e [5; S]. Here

PR I O P P

is true because of
(=i = (=)™ =< (*).

() By 1, 4, j, k we denote the Hamiltonian basis of the quatermions over
the reals.
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In case (oo,0,1,14,2¢), (o00,0,1, —%,2¢) would be in the same
I'(8)-orbit there would exist an inner automorphism
z—>aza”', aef*

such that —i = aia™!, 2¢ = a(2¢)a~!; but this is obviously not true.
Thus, for describing orbits it is not sufficient to define a generalized cross

T )

but everything works as we have to prove, by using

(o I BT D2

so by using the earlier defined generalized cross ratios

[ » P ]
A‘, L) ’ An .Aa )

In order to prove the theorem we start with a lemma, which charac-
terizes generalized cross ratios in another way (see [3] for the case n=4):

A BO

LEMMA 1. Denote by I' (
PQR

) the set of all ye I'(8) such that

A* =P, B" =@, C* =R.
Then for (A, B,C, Dyy Dy, ..., Dp_pn_s)e[n; 8] the equation

A B A BO
_ (D;’,.D;',...,D;’n)]yel“( )
-D11"'-’Dm C oo 0 1

holds.

ABCO
Proof. Let ¢ be an element of F(

1) and let «, = (D,),
o0

» =1,2,..., m. Because of the bijectivity of ¢ we have «,¢S\{0,1}.
Moreover,

{(D¥’---,D;)lyer(i B 0)}:{(a‘1’,...,a,‘n|ae1’(°° 0 1)}

01 oo 01

01
holds. Because of the fact that I ( * ) contains exactly inner auto-

co 01
morphisms of 8§, we get

{(Dz, ey D)y — @y rey ap)) € B
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o pryper(t B
Denote for the moment(DY,...,D%)|ye I by -

c0 0 1
D,,...,D, C|°
Thus we put
4 B <( YeE
D, ..., D, C = \\Qpy ceny Ap)) € Ly

A B C
where ¢, = (D,)%, v = 1,2,...,m with an arbitrary ee F( o1
o0
Case 1: 4 = o
If we take (be aware of (4, B,C, Dy,...,D,)e[n; 8])
1

2" = C_B(z—B) for ze 8

and oo® = o0, 50

[ A B]"‘ <(A B) (A B) (A B)> [ A
Dy,...,D, ¢l \\b,0’\p, ¢/’ \b, ¢// l\b,,..., D, Ccl

Case 2: B = oo.

Take
1
(C—A) z # 00, A,
0 Z = 00,
0o z2=A
Then
1 1
a1y oony Gl =<((0—A)—D1—_;,---’(0—A) Dm—A)>

(5, o5, oD =lo, 20 ¢

Case 3: C = oo.

Take
1
p— (A—B)+1 2 # 00, A,
2’ = 1 for ¢ = oo,
00 z =A.
Then
1
A—B)+1 = A—B D —A)) =

(B_-Dr)

57
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and therefore,
<( ) 4 b
ceeg @ = .
My vees Gm D,,...,D, C

Case 4: ¢ {4, B, C}.
Define

a=(B-A4)(B-0)'(C-4), c¢=a(4-B)"

and
a +-¢ 2 # o0, A,
z_
2 =
¢ for 2 = oo,
oo z=A.

This is the mapping y(a, 1, ¢, A) in the notation of [3]. For D, = o
we have .

A B
D:=c = (A—B)(D 0) (A—B)"L.

For D, # oo we get (be aware of D,¢ {4, B, C})

D; =a

A
+ec =(A—B)(D

14

B A—B)!
5 O)(—).

Thus,

A B\ _ | 4 B\
(a1 -y an)> =<(t(1)1 o)t l""’t(l),,, o)t 1)>
IR PR

holds with ¢ = A — B. Now altogether we have

[ A B]* [ A B]
D, ...,D, C D,,....,D, C|

LeEMMA 2. Consider (A, ..., A,)e[n; 8] and ye I'(S). Then

A? A A, A,
Al oy AL AT | Ay, Ay 4]
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Proof. Lemma 1 implies

4 A : [ AY 4% 4
[Az,.-.,A; A§]=l(AZ,---,Al)IreF(oo X 1)

4, 4,
vl 44, 4o ]

As a consequence of Lemma 2 we get that the pairs (I, w) of the
theorem are n-point-invariants.
It remains to prove that every nm-point-invariant can be deseribed
as was done in the theorem.
So let us consider an arbitrary =-point-invariant (I, ). We have

to prove that
[ -A-l "4-2] [ Bl B2]
Ay, 4, A, Bsy ..., B, B,

implies (44,...y4,)" = (By,..., B,)" for elements (4,, ..., 4,,), (B, ..., Bp)
of [»n; 8]. With

Al .Az A3)

=l(Aﬁ,...,A:)léeF(w :

EeF(Al A, Aa) 7751,(31 B, Ba)
y

w0 0 1 oo 0 1

and Lemma 2 we get

o0 0 oo 0
Af,..,A 1) | BI,...,BL 1

<(A£’ ...,Af,) = <(BZ, ,B;';»

This implies the existence of an element te 8* such that A% = ¢tB’¢™!
for » =4,...,m.

Denote the inner automorphism of 8, induced by ¢, by ¢. Then we
have

and so

A} =B, v=1,2,...,n,
with y = &'y e I'(8). Thus

(Aly ceey An)w = (A.;) veey A;‘z)w = (B].! seny B'n.)w
is true.
As an a;pplicatiog we determine in case S is the sfield of quaternions

oo 0 L oo 0 s o
[z’,% 1]-——((@,2@)) and I_i’% 1]—(( y 21)).



60

W. Benz

Because there is no inner automorphism g such that (—4)® =4 and

(29)° = 27 we get {(i, 2¢)) # {(—1, 21))>, what implies that (oo, 0, 1, 4, 27),
(o0, 0,1, —1, 27) are in different orbits in correspondence with our previous
example.

(1]
(2]
(3]
(4]
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