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TRAVELLING SALESMAN PROBLEMS

Abstract. We introduce a class of so-called skew orderable networks. Roughly speaking, to
vertices of a skew orderable network G one can assign positive integers in such a way that the
assignment, called an ordering function for G, reflects certain structural properties of 4-vertex
cycles of G. It is shown that finding a shortest hamiltonian cycle in a skew orderable network is
nothing else but constructing an ordering function, which in turn can be obtained in polynomial
time with respect to the number of vertices.

1. Introduction. In this paper we consider simple undirected networks (to
be called networks), namely G = (V, E, g), where V is the vertex set, E is the
set of undirected edges, and g is the weight (or distance) function ¢: E — R.
In what follows we write g(v, w) instead of ¢({v, w}) for convenience.
Moreover, N, denotes the set {1, 2, ..., n} and |X] is the cardinality of the
set X. A complete n-vertex network is denoted by K,, while C, is a cycle
with n vertices. H = G means that H is a subnetwork of G. A subnetwork of
G induced on X = V(G) is denoted by G|X.

Let us begin with the followmg lemma which is fundamental for our
approach.

Lemma 1. Let X = N, and let f: X x X — R satisfy the following condi-
tions: ,

(i) symmetry: (Vk, 1) f(k, 1) = f(l, k),

(ii) growth comparability: (Vk < )(Vi <j) (k, 1 #1, j)

FUD—1 D> D—1k, ).

Furthermore, let Sy be the symmetric group on X and let F be a fuizction
F: Sy — R defined by “

n—1 .
(1) (VreSy) F(n) = _Zl f (=@, n@+ 1)+ 1 (r(n), n(1).
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Then F attains its minimal value for

~_(1 2 3 4 .. n-3 n-2 n-1 n
"=\ n—=1 3 n=3 ... 4 n=2 2 n)

Proof. Induction on n. For n=2, 3, F is constant, and for n =4 it
takes at most 3 different values. The permutations to be considered are

_(1234 _(1234
=123 4f T\ 2 4 3)

,__(1234
"=\ 3 2 4/

Fm)-F@=fG3,49-f3, D-fC2,H+f(2, 1),
F(r)—F(@=f(4,3)-f4 D-f(2,3)+1(2, ).

We have

By property (ii), both differences are nonnegative. When n = 5, one should
inspect 12 distinct permutations to see that

1 2 3 45
1 4 3 25
is the optimal one.

Actually, each permutation is regarded as a cyclic arrangement of
elements of X. Each pair of the elements neighbouring in such a cycle occurs
in one component of F. We shall speak of cycles or permutations on X
equivalently. The idea of the inductive step is to insert 1 and n properly into
the optimal cycle on {2, 3, ..., n—1}, showing that the resulting cycle on X
is optimal. - : _

Let Y= X—{1, n}. By assumption and due to symmetry (i),

,__( 2 3 ... n-2 n-—-1 S
= n—-1 3 ... n-2 2 €y

is an optimal cycle on Y. Let © be any ‘cycle on Y and assume that i and j-
are neighbours in 7. By #; we denote the cycle on X that is obtained when 1
and n are inserted into n between i and j in such a way that 1 becomes a
neighbour of j and n a neighbour of i, ie., -

r=(.. i j ..) ad ®=(.. i n 1 j ..
We shall see that |

(V2<i,j<n-1)(Vr=(.. i j ..)eSy) F(n}) > F(72. ).
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We have
F(r)—F (72 ) |
=Fm-F@+f0n+f(LD-fCN~f 2 n-f(1,n=1)+2, n—1)
2 [, n—f@)-(fA, =0~ D)-f(2, N+f(2,n-1)
22 n-f2,)-(f2n=)~f(2,)-f2, N+f(2 n-1)=0.

To consider the situation when 1 and n are inserted into a cycle
Separately, let us denote by n}j the cycle on X resulting when 1 is included
between k, I, and n between i, j in me Sy, with k, | as well as i, j neighbour-
i[fllg in 7. Without loss of generality assume that i <j and k <[ Let I <j.

ence

F(mj)—F (%2,

=Fm)—-F@+fin+f(n, )—fG D+ k, D+f(1, D—f(k, 1)
—f(L,n=)=f(n, )-f(2, N+f(2,n-1)

2 f, m—fG)~(f, n=1)=f(, D)~(fk, - f(k, 1)
+f(m D+ 2, n=1)—f(n,1)-f(2, n)

2 f2,m)—f2N=(f2,n=1)=f(2, D)= (f(n, h=f(n, 1))
+f N+ @2 n=)=f(n, )—f(2,n

=)=, D—=(fQ2,)-f(2, D) =0.

A similar résult is easily obtained for the case [ >j > k. Assume finally that
!>k >j>i We shall transform mi} to a certain oeSy such that

F(n) = F(o) > F(7i- 1)
This is done as follows. Consider the second neighbour of i, say m, in =i If

M < k, ¢ is obtained by moving the pair (i n) between k and 1 and leaving
‘™M and j as neighbours, i.e.,

ai=(C.. m i nij ... k11 .)
and |
6=(.. m j ... k i n 1 1 .).
Hgnce | '
F(m)—F (o) = £ (n, )—f (n, \—=(f (m, )= f (m, D)+ f (k, )= f(k, i)
= fk, )—fk, )=(f &k, D—f (k, D)+ f (k, )—f (k, i) = 0.
When m > k, to obtaiq o we exchange simply the places of i and 1 in =}, ie.,

o=(.. m 1 nj ... kil .)
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Again
F(m))—F (o) = f(m, )~ f(m, 1)—(f (k, - [ (k, 1))

In both cases, 1 and n are neighbours in . Therefore, o =y, for some y € Sy-
Since we have already shown that F(yf) > F(%2.,), the proof is completed.

Our approach works as follows. Given a network G = (V, E, g) we shall
try to construct an injective mapping w: ¥V — N, such that a function defined
by /

(2 fEN=el0 '@, 0™ ()

has property (ii) of Lemma 1. Symmetry (i) is obviously satisfied since G is
undirected. Now, since F(n) defined by (1) gives the length of the cycle

(@ ' (x(1)), @' (x(2), ..., @ (z(m), @~ * (=(1)))
in G, the shortest hamiltonian tour in G is determined by
G M), 0 @m-1),07'(3), ..., 07 (n=2), 0”1 (2), 0”1 (n), @ (1)),

and hence the TSP for G has been reduced to the problem of constructing an
appropriate .
For other tractable cases of the TSP the reader is referred to [1].

2. Orderable networks and their properties. Let us consider first a simpler
case where the function f in Lemma 1 has an additional property

@ (VK)(Vi <J) £k, )— 1k, i} > 0.

Using (2) one arrives at the following

DerinNTION 1. A network G = (V, E, g), where |V| = n, is called orderable
iff there exists an injective function w: ¥V — N, such that

) (Vx, y, ze¥) e(x, y) <e(x, 2 = 0()) < ().

o is called an ordering function for G. Let 2(G) denote the set of all ordering
functions for G, and Ord denote the class of all orderable networks. If 8
particular we Q(G) is selected, G is said to be w-ordered.

ExampLe 1. GeOrd = (VH < G) HeOrd. However, orderability of all
proper subnetworks is not sufficient for the orderability of the whole
network, in general. An example is a cycle C4 (Fig. 1). One can verify that
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CaeOrd iff e, Ney, = @, where e, and e, denote the longest and the
shortest edges of C,, respectively. On the other hand the deletion of a s1ng1e
edge results in an orderable subnetwork of C4

DeriniTioN 2. Let G =(V; E, ¢). Then G =(V', E), called the associate
of G, is a dlgraph defined on the basis of G as follows:

1° V' =

2 E = {(u u)erV (erV) o(x, u) > o(x, v)}
The vertex x appearing in 2° is said to generate the arc (u, v).

TueoreM 1. GeOrd iff G contains no directed cycles.

Proof. Suppose that G contains a cycle C and let u and v be any two
vertices of C. Thus both (u, v) and (v, 4) appear in the transitive closure G*
of G. Since \

(1, u)eE(G'w)_ iff (cheQ(G)) o (u) > o),

we conclude that G ¢Ord.

Now, let G be acyclic. This means that all induced subdigraphs of G
Contain a vertex v with outdeg(v) = 0, because otherwise G would contain a
Cycle. We shall construct we Q(G). Let v be any vertex of G with outdeg (v)
=0. Set w(v) = 1 and remove v from G. Next, in G, = G|(V— {v}) we find a
vertex u such that outdeg(u) = 0 and we set w(u) = 2, removing u from G,
and so on. It is now easy to see that G is w-ordered, and thus GeOrd.

Let us estimate the complexity of constructing w for G. Since we have to
Consider ali pairs of 1nc1dent edges in G in order to obtain the associate G
this requires

z": (deg2 (v,-)) < n(n— 1; (n—2)

Steps, where n=|V(G) and m=|E(G). The algorithm for constructing
@e Q(G) given in the proof of Theorem 1 requires no more than O(n?) steps
for completion, since any time a vertex is removed from G, one has to
decrease the valences of at most all remaining vertices. Thus the total
Complexity of the method is not greater than O(n3).

One can easily establish several results concerning orderability of vari-
Ous network classes, e.g., orderability of all acyclic' networks and of all odd
Cycles. Our aim, however, is to study in detail the orderability of complete
nd, in general, hamiltonian- networks and to employ additional restrictive
Conditions which will yield ‘property (ii) of f in Lemma 1.

Tueorem 2. K,eOrd iff (VC, = K,) C,eOrd.
. Proof. If K, is orderable, then each of its subnetworks is orderable

Xample 1). To prove the converse implication, observe that a nonorderable

Cs is contained in G iff-there exists a directed cycle of length 2 in G.
Assuming ‘K, ¢ Ord, we shall see that C, < K,. Thus, let r be the length of

(or <2m?—m)

i=1
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the shortest cycle
C=W—v—...~v, -1

contamed in K,, 2 <r<n lfr<n,then for every ve V(K,)—{vy, ..., v,} the
following inequalities should hold (cf. Fig. 2): :

ele)) = gler) = 0(es) = ... > a(e) = 0(ey).

~
V3 N

Fig. 2 - Fig. 3

However, if any of the inequalities were strong, we would have a contradic-
tion g(ey) > g(e,). Therefore, no arc of C, is generated by an “external”
vertex and we can consider both cases r-<n and r = n uniformly.
Let v, (3 < p<r) be a vertex that generates (v,, v;) (Fig. 3). We have
2(e) > of f )- By assumptlon, C, is the shortest cycle in K,, and hence neither
(v1, v,) nor (v,, v,) belongs to E (K,). But this means that e(f) = o(g) = o(e)
which contradicts ¢(e) > ¢(f). We conclude that the number r, if greater
than 2, can always be reduced.

Finally, let us formulate a condition related to (i) in Lemma 1. Consider
a cycle C, with

E(CJ=1le.f.g, b}, where ole) <o(f) <elg) <elh).
The cycle is called skew iff

(6) e(e)+e(h) = e(f)+elg)-

A network is called skew iff all its cycles C, are skew. Now one can verify
that the combination of skewness and orderability makes Lemma 1 applicable
as far as the network is complete (!), since one must be sure that all edges
of (3) do exist in G. The next section will be devoted to the study of
noncomplete hamiltonian networks.

It should be noted that both skewness and orderablhty have no relation
to the triangle inequality, which may hold or not in a skew network G e Ord.

3. Strong orderability. The usual way of handling the TSP in noncom-
plete networks is to supply “very long” edges for the lacking ones. Thesé
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additional edges will never be selected for constructing the shortest cycle
because of their length, provided that the original network is hamiltonian
itself. Let us denote by G°* a completion of G = (V, E, g), where for supplied
edges f¢ E we put

e(f)> 2 le(e)l.

ecE

If g is a set constant on supplementary edges, we write G* for the comple-
tion. Note that G* is not necessarily orderable even if G is so.

DeriNniTioN 3. G is called strongly orderable iff G™e Ord.

Lemma 2. G is strongly orderable iff for every U < V(G), |U| =4, G|U is
either complete orderable and discrete (i.e., has no edges) or has one of the
Jorms shown in Fig. 4, where

e@<eb)<e@<eol) ad eb)<e(d<el).
v
a b c

Fig. 4

Proof. By Theorem 2, G*eOrd iff it contains no nonorderable C,.
Consider any 4-clique K, in G® (Fig. 5). Let we Q(G*) and

o) < o(x) < ey <o(2).
From (5) it follows that | |
e@<ed)<eol<e@<e(f) and o) <eod<ele.
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Possible forms of G|{v, x, y, z} are now obtained by stepwise deletion of the
longest edges in K,. On the other hand, whenever “long” edges are added to
any graph in Fig. 4, no nonorderable C, occurs. - T

The problem we are faced with now is to provide that (6) will not be
violated in a completion G° of a skew and strongly orderable network G. As
we shall see, it can always be done by varying the lengths of supplementary
edges in G*. ‘ _ |

LemMA 3. For every skew and strongly orderable network G =(V, E, @)
there exists a skew and orderable completion G°.

Proof. Set
M =2+7Y lo(a)l.

acE

For every {x, y}q'.:E put g(x, y) = M. The completion G* obtained so far is
orderable since G is strongly orderable. Now select any we Q(G®) and for
every supplementary edge {x, y} set ,

Q(x, y) = Me@+o®

Observe that G° just constructed is still w-ordered. We claim that (6) is
satisfied for every C, contained in G°. We shall show that this is the case for
the worst possible pattern of C,, ie., such that (Fig. 6) . f, g and h are
supplementary edges and g¢(e) may be either negative or positive. It follows
that w(x) < @(z) and w(y) < w(v). We have

) ( f) = M@=+ to(v), 0 (g) = M0 +o@) and 0 ( h) = MoeWtaol)

Hence

Mo9*20 4 g(e) = (2+ 3. lo (@) M0+ (¢

acE

2 2Mtq(v)+w(z)—1+ Z |Q(a)|+Q(e) ? Mm(n)+m(x)_|_.Mm(y)+m(z)'
. ack ‘

Fig. 7 -
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It has to be realized that Lemma 3 is only of theoretical importance and
not of practical one. Lemma 1 (ii) requires the whole orderable network to
be skew and G* need not be such. In spite of this, (3) works properly on G*
(provided G is hamiltonian) since w is not affected in any way while G* is
being “strained” to the skew G°.

To sum up, our method applies to hamlltoman networks that are both
skew and strongly orderable. When a generalized TSP is to be considered for
nonhamiltonian networks, one needs a different approach in which supple-
entary edges represent the shortest paths between nonadjacent vertices.

ExampLE 2. Consider a skew network GeOrd shown in Fig. 7 (solid

lines). After supplying the edges {z, x} and {z, u} with the weight

M= lo(dl =100

ecE

we find G, the associate of G (Fig. 7). Next we2(G) is computed: w(w) = 1,
o) =2 o) =3, o(x) =4, o) =5 and w(z) = 6. Now (3) can be applied
and we have

C=(o"'(), 0 1(5), o' (3), 0™ (4), @™ (2), @™ (6), (1))
=(w,u,y, x, 0, z, w.

The length of C, the shortest hamiltonian cycle in G, is 43.

In the general case, wef(G) is constructed without assumption (4).
Property (i) of Lemma 1 together with (2) yield the following constraint:

M (Yu, v, x, ye V(G)) olu, )—olu, ¥)> o(v, D—e(, y),
w(u) > w(v) or ® 0) > o(x).

The construction of we2(G) is a bit more complicated then, since the
alternative in (7) causes some new difficulties. This case will be discussed
elsewhere.
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