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ON COUNTABLY COMPACT REDUCED PRODUCTS, III
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L: PACHOLSKI (WROCLAW)

0. Introduction. The present paper contains a characterization of the
family R of all ideals .# of subsets of a set I having the following property:
for every family &/ = (U;: i¢I) of similar relational structures (or finite
structures) the direct product of &/ reduced by # is countably compact.
Similar characterization for w,-universal reduced products are also given.

Investigation of compactness of reduced products was initiated by
Keisler [7] who described, for every cardinal number x, the family of
all maximal ideals .# such that for every family < of relational structures
the direct product of « reduced by £ is x*-compact. Also some other
results on compactness of direct products reduced by maximal ideals
were obtained by Keisler (see [9], where the incompactness of reduced
products was studied).

The first result without assumption of the maximality of an ideal
was obtained by Keisler [8]. He proved that the direct product of every
family of Boolean algebras reduced by the Fréchet ideal (i.e. the ideal
of all finite subsets of w) is countably compact. Jonsson and Olin [6]
generalized this result to products of arbitrary relational structures. Gal-
vin [5] noticed that the Fréchet ideal in the theorem of Jonsson and Olin
can be replaced by an arbitrary non-principal ideal having countable basis.

Conjecture of Jonsson and Olin that the case described by Galvin
does not exhaust all ideals .# from the family R, even if we assume that
the ‘Boolean algebra of all subsets of I reduced by . is atomless (Boolean
algebra of all subsets of an infinite set I reduced by a non-principal
ideal £, with countable basis is atoml_eés), turned to be true and a charac-
terization of the ideals from R with this additional assumption was obtained
in a paper [10] by Ryll-Nardzewski and the author. Benda [1] announced
generalizations of some results of [10].

The characterization of the family R presented here was indepen-
dently obtained by Shelah [13] who was concerned with the more general
case of x"-compactness. |

The paper is divided into 5 sections. In sections 1 and 2 we give
the necessary background needed in sections.3 and 4..Section. 3 contains
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some results concerning countably compact reduced products, section 4
deals with o,-universal reduced powers. In section 5 we prove some
generalizations of a theorem of T. Skolem concerning elimination of
quantifiers in the theory of atomless Boolean algebras.

Several results presented in this paper were announced in [11].

1. Notation and terminology. By U (sometimes with subscripts) we
denote relational structures (similarity type and first order language L
are fixed), and the universe of a relational structure U is denoted by A.
We assume that every element of A has a name in L (excepting section 4).
We assume that a set I is always infinite and every ideal is non-principal.
2 denotes the Boolean algebra ({0, 1}, U, n, —). If # is an ideal of subsets
of #, then AL denotes the power A reduced by ..

Let (A;:ieI) be a sequence of similar relational structures and
be an ideal of subsets of I. A subset X of the product A = P 4, is called

el
definable in A, = P A,;/# if for some formula ¢ of L we have

tel
X ={fed:Usko[f|7]}.

By 2 we denote the set of all finite sequences of 0’s and 1’s.

A relational structure is said to be countably compact if the family
of all sets definable in this structure is countably compact. For countable
languages this notion is equivalent to the w,-saturatedness.

If L is a first order language and a a cardinal number, then L(a)
denotes a language obtained from L by adding, for all § < a, individual
constants a;. If A is a relational structure and, for each g < a, a5 is an
element of A4, then (¥, a)s., denotes the structure obtained from U by
adding all a; as distinguished elements.

A relational structure is called a™-universal if, for every set A of
sentences of L(a) which is consistent with Th(), there is a model of
Th(A)vud of the form (A, ag)s-..

The theorem of S. Feferman and R. L. Vaught, which is very usefull
in investigations of products of relational structures, is not applicable
to reduced products. Dealing with reduced products one can use the
Weinstein’s extension of this theorem (see [4]) or one must change the
notion of the reduced product treating equality as an equivalence relation.

Let (A;:ieI> be an indexed family of relational structures and
A = PA,. If 6 is a formula of L with n+ 1 free variables and f,eA for

tel
k < m, then we put

KU, 0](foy -5 fa) = {iel: U FOSo(0), ..., fu(9)]}-

A sequence { = (9D, 0,, ..., 0,,> is called acceptadble if @ is a formula
of the language of Boolean algebras and 6, ..., 06, are formulas of L.
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An acceptable sequence ¢ is called partitioning if the formulas \/ {6;: i < m}
and T1(6;A0;) for ¢ # j are logically valid (\/{8;: ¢ < m} denotes O,v...v 0,,).
Now we will state a version of the theorem of S. Feferman and R. L.
Vaught which will be used in the sequel (cf. [3] and [4]).
THEOREM. For every formula ¢ of L with n+1 free variables there
exists a partitioning acceptable sequence { = (D, b, ..., 0,,> such that, for

every family (U;:iel), every ideal F of subsets of I, and every sequence
{foy +++y fup of elements of PA;, we have P U,/ k ¢[f] if and only if

i, el i, el

25 FOLK[A, 0)(foy -y fu)[F5 oy KU, 0,)(foy -5 Fa) 2]

2. Lemma. Before formulating the main result we will formulate
some auxiliary statements. The author believes that the following refi-
nement of a theorem of T. Skolem, (see [14]) is well known (see Section 5):

PRrROPOSITION 1. Let T be the theory of Boolean algebras. If @ is a formula
of the language of Boolean algebras with the variables vy, ...,v,_,, then

THoo N VP (),
i<k j<m
where D, ; is a formula with one variable v, ;, and 7;; is the term with the
variables vyy ..., V,_;.

DEFINITION 1. If A = P A, and S is an ideal of subsets of I, then by
tel
A 5(A) we denote the family

{{fEA: 25‘ F 0'[{7::f(i)€B,L}/j]} . Bi = Ai
and o i8 a formula of the language of Boolean algebras}.

PRrOPOSITION 2. For every sequence (W;:iel) and every ideal S of
subsets of a set I, the family of subsets of A = P A, definable in A, = PA;|SF
iel iel

is contained in the closure of A ,(A) with respect to finite unions and inter-
sections.

. Proof. By Weinstein’s refinement of the theorem of S. Feferman

and R. L. Vaught, for any formula ¢ with one variable there exists a parti-

tioning acceptable sequence { = {(®, 0,, ..., 6,_,> such that for every feAd

(1) Uy k@[f] if and only if 25+ O[K[A, 0,1(fo/#, ..., K[, 6,1(f)/#].
Applying Proposition 1 to @ we get
(2) 25 FQeo A VO ().

i<kji<m

Since { is a partitioning sequence, we can assume without loss of
generality that 7;; is the union of some v,.
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-

On the. other hand,
. . ;
25 Fy(o, V... Uy, ) KA, 6,1(f))F, ..., K[, 6,1(f)/#]

if and only if
(3) “ 25#1/;[{1261:‘1[;F(@kov...v@m)[f(i)]}/.ﬁ],
{ind, consequently, (3) holds if and only if
25 Fy[{ieI: f(s)eB;}],
where B, = {aed;: W, F (@kov.._.v@km)[a]}, which in view of (1) and (2)
completes the proof. '

’ LEMMA 1. Let # be an ideal of subsets of a set I such that 2% is countably
compact. Then

(a) If I is the union of a countable subfamily of #, then for every sequence
U, :iel) of relational structures the family A ,(A) is countably compact.

(b) For every sequence {U; : i eI of finite relational structures the family
A 5(A) 18 countably compact.

Proof. Let € =<C;:j< w) be a countable subfamily of ¢ ,(A4)
with the finite intersection property, where
(4) C; ={fed : 25k o;[{ic]: f(i)e BYM}/AT}.

For every seduence (Egy evey E,0€2% let |
(5) b(€gyo--y &) = {iel : (BOYO .. .A(BM) =) £ 0},

where (BM)® = B and (BM)© — 4,— BY.
Let

2 = {o;(v;) : § < 0}V ...V S blegy ...y )1 (Eoyeeny Eny € 27}
We will prove that X is finitely satisfiable in 2%. In fact, let
2 = {0;(9;) : § S B}Vl ... R S b(egy ..ny &) 1 (Eoy oeny Exp €27
and n < k}.

Since ¢ has the finite intersection property, there is a function f

belonging to (M) C;. For j < k the set a; = {iel: f(i)e BY)}/S satisties X
i<k

in 2L, Since 2% is countably compact, there is a sequence (d,:n < )

of elements of 2% satisfying . Let (D, : n < w)> be a sequence of subsets

of I such that D,/# = d,. We shall define a sequence (D, :n < o) of

subsets of I such that

(6) D,|# =d,

and

()  D{n...nDE™ < b(egy ..., 6,) Tor every (eg,..., &,>e€2%.
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If D,,..., D, _, are defined, put

Dn(sm ey 811,—1)
= (D§Vn...ADE T (Db (s -y £a—1)) U (T—b(&oy ++vy Eqo1, 0))

and
Dn = U {Dn(507 M en—l) . <€07 eeey 8n—1>€‘2°°}-

By an easy computation one verifies that D, satisfy (6) and (7).

(a) Since I is the union of a countable subfamily of .#, there is a parti-
tion of I into sets E, (n < w) belonging to /. We are going to define
fen®. It icE, and (&, ..., &,> is a sequence such that ieD{n...nD{n),
then, by (5) and (7), (B™)*0n...n(BM™)) £ 0 and we put f(i) = a for
some a¢(BM)0n...n(BM)), Since {i: f(i)eB™}4D, = E,c F (4 is the
symmetric difference symbol), by (5) and (6) we bave fe ()¥.

(b) Let ¢el. Since U, is finite, there is a natural number » such that
if j < w, then BY) = B® for some k < n. Let {e, ..., &,> be a sequence
such that ieD{™n...nD)., Put f(i) =a for some a belonging to
(B A...A(BM)@), It is easy to see that {i:f(i)eB™} = D,,
hence, by (5) and (6), we have fe [ ¥.

3. Countably compact structures. Now we will formulate main
results of this paper.

THEOREM 1. If 2% is countably compact and I is the union of & countable
subfamily of #, then, for every sequence {W;:iel) of similar relational
structures, the reduced product W, = P W;/# is countably compact.

1el

THEOREM 2. If 2L is countably compact, then for every sequence

U;:iel) of fimite relational structures the reduced product A, = P A,/S

i8 countably compact. iel

Proof of Theorems 1 and 2. Obviously, it is enough to prove

that the family of substes of A = P A, definable in 9 is countably compact,
el

but this follows from Propositions 1 and 2 and from the known fact that

the closure of a countably compact family of sets with respect to finite

unions and intersections is countably compact.

Let us remark that the assumption that I is the union of countable
subfamily of # is necessary. This is shown by the following example
(cf. [10]). Consider a structure U given by an infinite set A and a decreasing
sequence of non-empty subsets B, of A (n < w) with the empty inter-
section. For any ideal # the sets @, = {f: {i : f(i)¢B,}«.#} form a decre-
asing sequence of non-void sets from o ,(A7). If fe() @,, then the sets
E, = {i: f(i)¢B,} belong to # and (U E, = I. n<e

n<w

On the other hand, the countable compactness of 2, does not imply
the existence of a partition of I into countably many sets from . An
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easy counterexample is provided by the algebra of all subsets of an un-
countable set reduced by the ideal of all finite sets.

THEOREM 3. For every complete theory T of Boolean algebras, there is
an ideal S on w such that Th(23) = T and 25 is countably compact.

Proof. For every complete theory T of Boolean algebras there is
an ideal #, on w such that Th(2f}o) = T (see [2]). Let #, be a non-principal
prime ideal on w. We define an ideal # on w X w by putting Eef if and
only if

{new t{iew : (m, i}eE}e.ﬂo}e.ﬁ'l.

Obviously 23*“ = (25)%,, consequently, Th(25*“) =T, and by
a theorem of Keigler (see [7]) 25*“ is countably compact.

4. Universal structures. In this section we do not assume that every
element of a structure has a name in L, but we assume that a language L
is countable.

DEFINITION 2. Let (W;:1el)> be a sequence of relational structures
and S an tideal of subsets of I.

a) If o is a formula of the language of Boolean algebras with one free
variable and & a formula of L with n4-1 free variables, then by D, , we denote
the set

{{Soy - s e PA mrly 2.!':0'[K[9I ?1(fos -+-y L)1 L}] L

(b) By P*U,/.# we denote the structure with the universe P A;/# and
iel il
with the relations D, 5. This structure is called a meat reduced product.
The language of a neat reduced product of a sequence of structures with
a language L is denoted by L.

(c) Neat power of U reduced by £ is denoted by Uj.

Let us remark that a reduced product P 2,/ is a reduct of the neat
iel
reduced product P*9;/#. This is an easy consequence of the theorem
tel
of S. Feferman and R. L. Vaught.
‘ PropPOSITION 3. Let (U;:iel> be a sequence of relational structures
with the same similarity type L, and S an ideal of subsets of I. Every formula

of L* is equivalent in the neat product P*U;/# to some open formula; more
precisely, to some disjunction of conju&tlz’ons of atomic formulas.
Proposition 3 is an immediate consequence of Proposition 1 and of
the theorem of S. Feferman and R. L. Vaught [3] (cf. also [10], Propo-
sition 1).
PROPOSITION 4. Let T be a first order theory and let A ={\/{p, ;:j
<k} :n< w}, where for n< w and j <k, ¢,; 18 an atomic formula of
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a first order language L. If A is consistent with T, then there 18 a sequence
{my, :n < w) of natural numbers such that the set A" = {p, , : 1< w}
i8 consistent with T.

Proof. We define, by induction, a sequence {(m, : n < w) such that
for < w the set

{(pn,mn:’n’<t}u{\/{‘pn,y‘:j<kn}:t<'n< CU}

is consistent with T. Let, for n < ¢, m, be defined. Then at least one of
the sets

Ai = {‘pn,mn n< t}U{V{(pn']-ng kn} < n< w}u{"’t,mi}

(¢t < k,) is consistent with 7' and we select m, in a way such that A,
is consistent.

We say that a relational structure U is w,-universal with respect to
atomic formulas if for every set A4 of atomic formulas of L(w) which is
consistent with 7Th () there is a model of Th(A)u 4 of the form (U, a;);...

LEMMA 2. Let # be an ideal of subsets of a set I such that 2% is w,-uni-
versal. Then

(a) If I is the union of a countable subfamily of F, then for every rela-
tional structure A the neat reduced power W, is w,-universal with respect
to atomic formulas.

(b) For every finite relational structure U the neat reduced power Ul
18 w,-universal with respect to atomic formulas.

Proof. Let 4 be a set of atomic formulas of L* (). By adding apparent
variables we can obtain 4 = {D%‘,n :n < w}, where 4, has n+1 free
variables z, ..., x,.

Let

2 ={0,(v,):n< o}u{tfon...Anvl = 0:n< o,
(Ey ooy €2, WE 13y ... Aw, (HLO AL . ASD))}.

We prove that ZUTh(2L) is consistent.
Let

2 = {0, (v,) : n < E}u{rlon...nvn) =0:n <k,
(Eoy vrey £ €2, WE 1Ty ... A, (9O AL A W),

Since the set Th(A,)uUA4 is consistent, there are functions f,, ..., f;
belonging to A’ such that Ak D, , [fo, ..., f,] for n < k. Let

Bn = {7’ : Uk '9i[fo(i)’ 7fn(7')]}

Of course, o,(B,/#), and if Ar 1T x,... Jz, (9P A...A8), then,
for 1¢1,

Ak IOV AKD)[Fo0), -, ful6)]-
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Consequently, B,/#, ..., B,/ satisfy X, in 2%.

Since 2% is w,-universal, there is a sequence {c,; n < w> such that
(2%, €u)n<w is @ model of Z. Let (0, : n < w)> be a sequence of subsets of I
such that

(8) C.|F =c,
and |
(9) 0fn...n0W =0 it con...ncw = 0.

Now we will define a sequence (g, : 7 < w) of functions such that
(s, gn)n<w is a model of A.

(a) Let (Z,:n < w) be a partition of I into sets belonging to J.
If icE,, then for some (g, ...,&,> we have ie Ofdn...n O,

Since C{Yn...NC¢» is non-empty and (2%,¢,),., i8 a model
of 2, there is, by (8) and (9), a sequence {a;, k< n) such that
Ak (IO AN [ay, ..., a,] ’

For ¢ < n we put g, (¢) = a, and for ¢ > n the element g, (¢) is arbitrary.
Similarly to the proof of Lemma 1 we prove that the sequence <{g, : k¥ < »)
has the desired properties.

(b) The construction of the sequence is left for the reader.

THEOREM 4. Let # be an ideal on 1. If the Boolean algebra 2% is w,-uni-
versal and I is the union of a countable subfamily of £, then for every rela-
tional structure A the neat reduced power Wy 18 wi-universal.

THEOREM 5. If 2L is w,-umiversal, then for every finite structure A
the neat reduced power Wy is w,-universal.

Proof of Theorems 4 and 5. Let 4 be a set of formulas of L*(w)
such that Th(U;)U4 is consistent. By Proposition 3-every formula in 4
is equivalent in % to a conjunction of disjunctions of atomic formulas.
Hence we can assume without loss of generality that 4 is a set of dis-
junctions of atomic formulas. By Proposition 4 every set 4 of disjunctions,
which is consistent with Th (), can be replaced by a set of atomic for-
mulas A4’ such that A'UTh(A}) is consistent and such that for every
formula pe A there is in A4’ a subformula y of ¢. By Lemma 2 there is
a sequence (a;:1< o) such that (Uj, a,);<, is a model of A’. By the
definition of A’ also the structure (U, @;);<., is a model of 4.

Since a reduced product is a reduct of a neat reduced product and a
reduct of w,-universal structure is w,-universal we obtain the following
corollaries: ' '

COROLLARY 1. If 2L is w,-universal and I is the union of a countable
subfamily of £, then for every relational structure U the reduced power A,
18 w,-universal.

CoROLLARY 2. If 2L is w,-universal, then for every finite structure A
the reduced power W is w,-universal.
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Analogous theorems for products are false (see [9]). Also, answer to
the question: Does Th(%If,) have countable universal model, provided
Th(2L) has countable universal model ? — is negative (see [11]).

5. Appendix. Elimination of quantifiers in the theory of Boolean
algebras. Since some mathematicians do not share author’s opinion that
Proposition 1 is well known, we will give a sketch of the proof.

Let B be a Boolean algebra and #(B) the ideal of all elements which
are joints of some atomic and atomless elements. Let B, =B and
B, =B, _1/F(B,_1) (see [2]). Let a;(x) be the formula of the language
of Boolean algebras which says that x/#(B;) is atomic and let B, ()
be the formula which says that /£ (B,) has at least j atoms. The formulas q;
and B, ; are described in [2]. By L, we denote the language of Boolean
algebras extended by symbols for «; and f,;, and T, is the theory of
Boolean algebras with defining axioms for «; and g, ;.

We will prove the following sentence stronger than Proposmon 1:

3.1. Every formula of Boolean algebras is equivalent in T, to some open
-formula of L,.

Let y be an open formula of L, with variables v, ..., v,. It suffices
to show that there exists an open formula ¢ of L, such that 7, - v, v & ¢.
The proof of this fact will be devided into few stages.

5.2. Every open formula of L, with variables vy, ..., v, 8 equivaleﬁt
in T, to a formula of the form

(10) V{/\ {999'(0'10'”5:7)) 1k <j<k,}ii< l}7
where ,
(11) o; = o0n...n oD

and @; is an atomic formula or the negation of an atomic formula.

Proof. It suffices to prove that every atomic formula ¢(z) is equi-
valent to a formula of the form (10). By a standard method we replace
the term, = by an equal term () {(a,-n'v("?)) j < m}, where o; is of the form
(11). On the other hand, we have -

T Fay(U{r:j<n}) Adai(;) 1 j < m}

and

TiFBii(Uf{n: k< n}) & V{/\{ﬂi,jk(fk) tk<m}: Z'jk =j}‘

53. If ¢ = /\{/\{‘Pi i(o; Ald) 1 4 < ko}:j < k1}’ then j
1'1"3 ,vn(p « /\{3’0 /\{(pz j 6 ('\’D(%)) 7’ 0} .7 1}'
An easy proof of this fact is omitted.
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S.4. Let y be a formula
(12) A {pi(onvy?) 1 i < &},

where a; and ¢, are as above. Then there exists an open formula y, such that
T.F v, o y,.

Proof. Let j, be the greatest natural number such that the formula @,
or the formula Bioi for some j < w, appears in y. We proceed by mductlon
on j,.

Let 75,0 = B5,x A 1Bj,k1 A0 V00 = Biie- If the formulas g; ; (6no})
and ~18; 5, (orrw(’)) for j, <j, appear in the conjunction (12), then y is false.
Otherwise  is equivalent in 7, to disjunction of formulas of the form

where y, and y, are formulas of the form (12) such that 1° the formulas a;
and B; ; do not appear in y, Ay, for j > j, and k¥ < o, 2° in atomic formulas
in v, appears the term onwv, only and in atomic formulas in v, appears
the term o— v, only.

Let & be a formula of the form (13). We will show that v, is equi-
valent in T, to some open formula. Consider few cases.

Case 1. k;> 1 or n; = 0 and in y; appears non-negated formula a;
or ~1p;, for some j< j, and ¢ =1 or ¢ = 2.

Then it is easy to check that & is false in 7).

Case2.k;>1oryn =0fori = 1or¢ = 2 and non-negated formula a;
and 7B, does not appear in y, Ay, for any j < j,.

Here

Ty F S & Y5 k.5, (0N0) A (000,) A Y; 1y i, (0—0,) A (60— 0,)

and one can verify that Jv, ¢ is equivalent in T, to some open formula
(for instance, if %k, =4, =7, =0 and k, =i, =7, =1, then 3Iv,9
« ﬁio+1,o(0)’\ajo+1(°'))'

Case 3. k;, =k, =0, 5, =15, = 1.

Here T,F3v,9 o 3v,y, Ay, and, by inductive hypothesis, there
is an open formula ¢ such that T,+3v,9 < ¢.

Compbining 5.2 with 5.3 and 5.4 we obtain the proof of 5.1.
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