ANNALES
POLONICI MATHEMATICI
XLVI (1985)

On the maximum of a,—3a,a;+ pua, and some related
functionals for bounded real univalent functions

by Z.J. Jakusowskl, H. Sieika (L6dZ) and O. TamMmi (Helsinki)

Franciszek Leja in memoriam

Abstract. By using Grunsky-type estimation the authors maximize the functional a,+
+(p—2)a; a3 + pa, for bounded real functions Sg(b) in some algebraic extremal cases. By aid of
the same estimation technique the special case p = —1 is treated in essentially all algebraic
extremal cases.

1. Introduction. Consider functions f which are analytic and univalent in
the unit disc U: |z] < 1. The functions are further supposed to be bounded
and normalized to form the class

Sb)=1{f] f(2) =blz+a; 22+ ..), [f(2) <1, 0<b< 1}.

In the sense of uniform approximation this class of bounded functions
includes the class § of unbounded functions. Therefore, we may briefly
denote S = S(0). The corresponding real classes, for which a,e€ R, are denoted
by Sg(b) and Sz = Sg(0).

There are two main methods for estimating the [unctionals: First, the
classical variational method by aid of which the freedom of the extremal
function is restricted and, second, the direct estimation method which is
based on Grunsky-type inequalities. The two procedures are often
complementary, as was seen with regard to the functional a; + Aa3 studied in
the complex class S(b) [5], [6].

In the present paper the functional chosen appears to be more receptive
to Grunsky-type estimations. Therefore, we choose these estimations as our
main tool and limit ourselves to reaffirm some estimation by aid of
variations.

2. Estimating the combination a, + (p — 2) a, a, + pa,. The two inequalities
to be used will be called the Power and the Jokinen inequalities, the theory
and the notations of which are presented in [7] and [8]. These inequalities
are applied in [9] to a functional closely related to the present one.
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Therefore, it is advisable sometimes to refer directly to [9] instead of [7]
and [8].
The unoptimized Power inequality in Sg(b) is [9]

a,—2a,ay < $(1 —b*—3ba? — a3 —24(a; —3a+ ba,) +
+22[2(1-b)—a,], AeR.
The choice

_ay—3a3+ba,
~ 2(1-b)—a,
yields the optimized Power inequality

A

(a3 —2a3 +ba,)?
a4~ 28385 < (1= b) ~ bha} —Ha} 5
a,+(p—2)aa; <3(1-b%—3ha}—1Ba3+G;
(a3 —3a3+ ba,)?
2(1-b)—a,

G = paz a;—
Here G is a polynomial of a,. Rewrite it in the form that presupposes a, in a
perfect square term. The use of the abbreviations
4=2(1—b)—a,, h=3a%-ba,
yields

1
G = paj a, _Z(a3 —h)?

1
= ——{as—[G-ipai+(p—(p+ Db)a:]}* +3p 33 -pai+

a4
+(p(1~b)—2b)a3};
(1) a, +(-P“2)az az +pa,
<$(1-b)+pa,+3[p*—(p+1)?*bla;—3(p*—3p+ a3 -
— fay~[G- 4P a3 +(p(1~D)=b)ay]}?

= F<3(1-0)+pa, +5[p* ~(p+1)*blai —3(p* - 3p+ a3 = F.
In the latter estimation the equality holds for
1° a3 = (3—1p)a3+(p(1—b)—Db)a,.
The optimizing A assumes for 1° the value
A =1pa,.

The sharpness of the estimation in (1) is guaranteed as far as the
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maximizing point (a;, a;) on 1° lies in the algebraic part I of the coefficient
body (a,, a;) (cf. [8], p. 149).

The other device to be used is the Jokinen inequality in Sg(b). Its
unoptimized form reads (cf. [8] and [9], (10)):

(2) as—2a,a3+a3—b*a,+2i(a;—ai+1-b)<}(1+4)> —-1<2<0.
Its optimized form reads ([9], (15)):
a, < a3+(3b%2—2)a,+2(a; +1) x3 —%x3,
0<xo=A+1=./ay—ai+1-b* < 1.

This yields for our functional the estimation

4, +(p—2)a, a3+ pa; < (30> —2+ pa, +a3 +(p—2)ay a3 +2(a, + 1) x5 —3x3
= [(p+1)b*+p—plaz+(p—1)a3 +Go,
Go = (pay +2) x5 —$x3.
Take G, as a polynomial in x,. Because x, = jpa,+1 is the point

yielding the local extremum and because x, > 0 we see that the following
alternatives occur.

For pa,+2 >0, G, is maximized in a; (or xg) for

xo=A+1=13%pa,+1; A=1ipa,,
i.e. for the curve

Jas—ai+1-b% =4pay+1;

2° a3 = (3p,+1) a3+ pa, +b>.
The use of the sharp maximum (which is not required here) is permissible if
—2< pa, <0. ‘

For pa,+2 <0, G, is similarly maximized for

Xo=4+1=0,

i.e. for the curve

3 a3 =aZi—(1-b?),
which is the lower boundary arc of the coefficient body (a,, ai). The
estimation on 2° is sharp as far as the parabola 2° lies in the algebraic part 11
of the coefficient body ([8], p. 149).

In the previous successful applications the curves 1°, 2° and 3° have
formed a smooth arc in the permissible part of the coefficient body, thus
allowing the sharp estimation on that arc (cf. e.g. [9]). This would hold true

also for properly chosen p-values. As a matter of fact, the parabolae 1° and
2° have a joint tangent at the point, where

= —— # —1
a — 1y .
2 p+1 P
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From this we see that the case p = — |, which is our main concern here, will
be the only exception where the curves 1° and 2°, assuming the forms

1° ay = 3d5—a,,
2° ay = 3ai—a,+b%
do not intersect. Thus, in the case p = —1 it is not possible to advance as

before, along the complete arc 1° U 2° U 3°. However, for a set of p-values we
find sharp estimations already from the form (1) of the Power-inequality.

3. The use of the Power inequality for —3 < p <%, 0 < b < 1. Consider
F to be a polynom in a,. From

F = -33p*-9p+13)a3+[p*—(p+1)’blay +u
we see, because 3p>—9p+13 > 0, that the local maximum and minimum of
F occur correspondingly at

2 2

p*—(p+1)°b 2 T2 2192 2
—(p+1)°b]*+u(3p*—9p+13).

3p2—9p+13_3p2—9p+13\’[p (p+1)"b1"+u(3p"=5p )

o, f=2

Compare first « and 2(1—b) by requiring that
3) a = 2(1-b);
@ J/[P*—(p+1)*b1*+u(3p*—9p+13) > 2p*~9p+13—(p—4)(2p—3)b.
This holds automatically, if the right-hand side is negative:
(5) 22 —9p+13+(p—4)(2p—3)b < 0.

For those values that interest us, —3 < p < %, 0 < b < 1, this condition never
holds. Thus, in that case, (4) is equivalent to the condition obtained from (4)
by squaring:
(6) p=(1-b)[p>*—9p+13—(p>*—13p+11)b].
Hence, for these values (b, u), (3) holds.

Require now that at the endpoints +¢ = +2(1 —b) the following order
is vahd:
(7) F(—¢) < F(o)

Condition (3) for the local maximizing point a then guarantees that the
polynomial F for —g < a, < ¢ is necessarily maximized at the endpoint

F(@-F(-90 =20[u-4(p*-3p+ 0’120
for [ ]20, ie. for

(8) 1= (p*—3p+)(1-b2

Conditions (3) and (7) are true simultaneously provided that the
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equality-curve in (6) runs above the equality-curve in (8) on the entire
interval 0 < b < 1. The direction of the two parabolae is the same for the
interval —} < p < %. They meet each other at b =1 and at b, for which we
require

9p—13 < 1. 2p+1<0

“15p—10° 7 3p—2 >
9) -i<pgi

Thus, in this interval (9) the parabola in (6) is above that in (8) for 0 < b < 1.

The maximizing value a, =2(1—b) belongs to the left radial-slit
mapping 1:1 (we are referring here to the notation m:n for a slit-mapping
where the image domain consists of a unit disc minus a system of slits with
m starting points and n > m > 1 endpoints [7]).

If now (8) and hence (7) remains to hold, but we are below the equality
curve of (6) we know that, on |a,| < 2(1—b), F is necessarily maximized at
a; =a >0 (g > 0). In this case the extremal domain is of the type 3:3 or 1:3.
In order to check the existence of this extremal mapping we have to consider
the location of the curve 1° in the coefficient body.

We refer here to [8], pp. 149-152, where the boundary curves of the
algebraic part of the coefficient body (a,, a3, a,) are given (cf. especially
Figure 38, p. 149 of [8]). The part I is determined by the boundary curves

bo

2: ay =ai+b>—1+i[2(1-b)—a,]%;
1" ay=-3-2b+80—-186%2 ay=ai+§+b*—1602+%(c*?+7?),
oe[b, 1];
a; = —3(1=-b)+3(1-34)(1-b"17?),
2. a3y =ai+i(1-bH)-8(1-30)(1-b"H)+5(1-31)2(1-b"1),
1—%$p*2 <A< i+5p%2
Moreover, the parabola
3: ay = 3a5—(1+3b)a, +6b(1—b)

divides I in the lower part of 3:3 and in the upper part of 1:3.
Compare first the location of 1° to the lower boundary 2:

(10)  @-3p az+[p(1—=b)—bla,— (ai+b*—1+;[2(1-h)—a;]*]
=3[2(1=b)—a,][(p+1)a;+2b] >0 for pe[~3, 3], 4, 2 0.

Thus, 1° is always above 2. The location of 1° with respect to the upper
boundary arc of I, 1’U 2, becomes evident by comparing the tangents of
1” and 1° at the point a, = 2(1 —b). We have for the derivatives:

2'3(das/daz)ay =21 -p = —4b < —4b+(b—1)p+3 = (das/day)s, = 21 -n € I°.



120 Z.J). Jakubowski, H. Siejka, O. Tammi

This strongly indicates that 1° lies below 1'u2 for a, >0, which can
be verified from the corresponding equations. Hence, 1° <1 for a, >0,

pe [_%’ %]
Compare finally 1° to 3 by forming

(11)  2a3—(1+3b)a,+6b(1-b)— {3 —1p)a3+[p(1—b)—b]a,)
=[2(1-b)-a,][3b—3(p+1)a,].
This shows that 1° is below 3 as far as

0 < a, < _..§b_
p+1
and above it from the point
b
p+1

onwards. This condition together with F’ = 0 yields for the boundary curve
separating the types 1:3 and 3:3:

3p*—9p+13 6p%b
12 =9~ " b2+6(p+1)b*— .
(12) H P+ 1) (P+1) P+
Fig. 1 shows an example of the regions found. As to the notations, we refer
to the end of Section 4.

‘L“

10
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THEOREM 1. In Sg(b) the functional a,+(p—2)aya;+pa, for —%
< p < $ is maximized by the left radial-slit mapping if

= [pP=9p+13—(p*—=13p+11)bj(1-b)=p,, O0<b<1.

If
P =(P*-3p+AA-b’ <p<py, 0<b<],
then the extremal domain is of the type 1:3 for
3p*—9p+13 6p*b
— = U3

2 2 _
P+ b*+6(p+1)b Pt

and of the type 3:3 for

B> H3.
4. The use of the Power inequality for p = — 1. In the main case p = —1
the order yu, > u, holds up to the point
bo = %‘3‘ = 0.88

From (11) we see that now 1° is below 3 for 0 < a, < 2(1—b). Hence, above

the curve u = y, the extremal domain is of left radial-slit type and between pu
=y, and u = u, of the type 3:3.

THEOREM 2. In Si(b) the functional a,—3a, a; + ua, is maximized by the
left radial-slit mapping if
23 —48b+25b2, 0<b<088,
2 1-b?, 088 <b< 1.

The type 3:3 is the maximal one for

(13) [T {

(14) 23(1-b)? < p<23—48b+25b%, 0 < b < 088.

Clearly, on the interval (0.88, 1] the result is not sharp. We may try
using the Power-estimate (1) more effectively as follows.
The upper bound of a,—3a,a;+pua, is taken from

(15) F=3(1-b%)—1a3+3a3+pa, for r<a, <2(1-)),
where r is the intersection point of
1° a3 = 305 —a,

with the upper boundary arc of the coefficient body (a,, a;). This consists of
the transcendental arc (cf. [7])

a, =2(clno—a+b)e[—2(1-b), 2bInb],

16
(19 a; = a3+20a,+2(6—-bP*+1-b%, b<o<l,
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and the algebraic arc

1
(17) a, =(1+m)a§+l—b2, 2b]nb<02<0

If 1° meets the latter arc we denote r = a3. If the intersection point lies on
the former arc, then r = a%.
From the expression of F,

~ 1
(18 F=F—(as—a+ar),

we read that for —2(1—b) < a, <r the unsharp upper bound of F is
reached on the upper boundary arc of the coefficient body. By using F for
r<a,<2(1—b) and F on the upper boundary arc for —2(1-b)< a, <r
we find the maximum for the whole interval |a,| < 2(1 —b). If the maximizing
point 1s

a,=a=2400+/1+254)>0 or a,=2(1-b)

the corresponding point (a,, a;)e 1° = I and the maximum found is sharp. In
the other cases F and F can not yield a sharp upper bound.

Numerical comparisons based on the above analysis allow a slight
improvement of Theorem 2. Thus it appears that the left radial-slit mapping
remains to be the maximum case still for

(19) 0, 092 <
The maximal character of the left radial-slit mapping can be squeezed
somewhat below the b-axis. However, although it is most probable that the
parabola y = 23 —-48b+25b* forms the expected boundary also for all the
values —3s < pu <0 our method fails in proving this. Clearly, the
improvement would require sharp estimations also in the elliptic cases, not
yet available.
Similarly, the maximizing type 3:3 can be extended to hold below the
curve u = %*(1—b)2. The unsharp boundary is indicated in Fig. 2 by a dotted
“line. The true boundary of the 3:3-region seems to meet the parabola u = 23
—48b+25b* before the endpoint (1, 0).

S 23—-48b+25b%, 0<b<092,
= <bhb<1

5. The use of the Jokinen inequality for p= —1. Start from the
unoptimized Jokinen inequality (2). The permissible choice 4 = —1 yields

a,—2a,ay+a3—b*a,—2(as—a3+1—-b% < 0;
(20) a,—3ayay—pa; < (2—az)ay+2(1—b*)+(b*+ ) a,—2a3—a3 = F.

As can be directly checked, the equality holds for the right radial-slit
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mapping, for which
a; = —2(1-b), a3=3-8b+5b* a,= —(4—20b+30b*>—14b%).
Because in F the factor 2—a, >0, we obtain a valid upper bound by

maximizing a, for any fixed a,, i.e. F is to be taken on the upper boundary
arc of the coefficient body (a,, a;) for —2(1 —b) < a, < r. As before r has the
meaning a2 or a¥. For r < a, < 2(1 —b) the upper bound F can, of course,
be used as before.

Try to find the region where the right radial-slit mapping gives the

maximum. It is necessary for (20) yielding the result that F is locally

maximized at a, = —2(1—b). The left upper boundary arc has the

parametric presentation (16). The left corner point is reached for ¢ = 1..
Introduce

l—-c=d>0.
In d we have, according to (16),
a, = —2(1—b)+d*+o0(d?), a; =3—-8b+5b*+4bd*+o0(d?).
This, when substituted in F, yields

F = 14— 46b +48b%— 166 — 2(1 — b) + (1 — 7+ 40b — 24b?) d* + 0 (d?).

From this we see that (20) can yield the right radial-slit mapping as a
maximal case only for

(21) i < 7—40b+ 24b2.

On the other hand the right radial-slit mapping cannot be maximal in a
larger region. This is seen by considering the inequality of Jokinen in the
optimized form, yielding

ay—3a a3 +pa; < (p+1)a;—2a3+(2—ay) x3—$x3.

The equality is reached here in the algebraic part II of the coefficient body
(cf. [8], p. 149) where the lower boundary arc

a; = aj3—1+b?
belongs. On it we have a valid equation:
a,—3a,ay+pa, = (u+1)a, —2a3.
Consider the values close to the point a;, = —2(1 —b) by denoting
a, = —2(1-b)+d?;

a,—3a; ay + pa,
= 14—46b+48b* — 16b> —2(1 —b) u+(u—~7+40b — 24b%) d* + 0 (d?).
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Thus, if x> 7+40b—24b?, the value of the functional for d* > 0 exceeds its
value at a; = —2(1—b). This shows, that the limit u = 7—40b+24b% in (21)
cannot be improved.

By using the estimation (20) we can confirm numerically that if (21)
holds, then the right radial-slit mapping does indeed give the maximum
except in the triangular region close to the point (0, 7).

In order to facilitate the comparisons consider F on the upper boundary
arc of the coefficient body. On the transcendental part (16) we have

(22) g = pu—1+80+4bo—20%—66a,—6a, a,=2(clInc—a+b),
2
and on the parabolic arc (17)

dF , 4 1
a _ 2 e -3(2+—)a.
) da, Mg ( +|nb)"’

If u<7-40b+24b% then dF/da, <0 for the interval —2(1—b)
< a, <r, provided that s < b < 1, where s is somewhat smaller than 0.16.
For 0 < b <s the derivative is non-positive up to a certain limit u,(b)
determinable numerically. Moreover, if u < —#5, then dF/da, <0. These

observations allow us to restrict the comparisons to the values ﬁ(—Z(l —-b)),

F(r), F(r), F(a) when considering the cases u < 7—40b+24b% From these
we infer that the right radial-slit mapping remains to be the extremal one as
far as F(a) < F(—2(1—b)). However, if y is large enough this condition fails
to hold and the curve

F(-2(1-b) =F(a)

forms a limit case between the right radial-slit mapping and 3:3.

THEOREM 3. In Sg(b) the functional a,—3a, a; + pa, is maximized by the
right radial-slit mapping if

%7—40b+24b2, 0.076-604-918 < b < 1,
(24) [TES

u(b), 0<b<0.076-604-918,
where u(b) is the root of the equation

(25) F(—2(1-b)) = F(a),

with

F(—2(1-b)) = 14—46b+48b>—16b>—2(1—b) ,

41425 2
F@)=31-b) 4o +25 A+ /T+250)+ 2%,

The boundary curve (25) is sharp; above it the extremal type 3:3 holds
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Fig. 2

and on it there are thus two extremal domains, 3:3 and the right radial slit-
mapping.

Fig. 2 shows the boundary arcs separating the regions of different
extremal domains. Let us denote these regions as well as the corresponding
extremal domais by the letters:
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A: left radial-slit, 1:1,

B: 3:3,

C: 1:3 (Fig. 1),

D: right radial-slit, 1:1,

E: elliptic cases.

The endpoints of separate arcs are:

P =(0,4971-084-667), Q =(0.076-604-918, 4.076-642-803),
R=(1,9), S=(1,0)

As was stated above, the arc BnD is only an approximative one.
Similarly, the lower part of A " B and 4 n E remains open for b close to 1.

6. The use of the variational method for p = — 1. In [2] the variational
condition of Dziubinski type [1] was derived for the functional in question
(cf. [2], (5.5045.7), p. 229). Rewrite this for the b-formalism used previously in
the present paper. Thus, for the extremal function f € Sg(b) maximizing the
functional a, —3a,a;+ pa, we have the necessary condition

"(2) \? 1
(26) 6((2)’) M@= 5N, 0<ld<l,

with
MW =Dy(W+w )+ D,(wr+w )+D, (w+w 1)=2P,
N2 =E; (22 +z2 )+ E,(z22+2 )+ E,(z+2z )+ 2E,—2P,
Dy=2b* D,=0, D,=2b*(u—a;—5dd),
E;=2b, E,=—2ba,, E,=2b(u—6a3), E,=b(3a,—9a;a,+pa,),

P =2b* min u(x), u(x)=cos3x+ucosx,
0€x<2p

u=b"%(u—ay—>5d).

The functions M and N, which are non-negative on the unit circumference

possess the symmetry property: If ¢ is a zero of M or N so is also t~! and t.
For P we obtain [2]

2b%(u+1) if u<-9,
3—u\¥?
P= —2b‘(7) if -9<u<0,
—2b*(u+1) if 0 <u.

We want to choose u so that a desired factorization leading to the left radial-
slit mapping occurs in M and N. Following the lines of [2] we observe that
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the best possible choice for u is
(27) i > (1—b)(27—25b).
This yields
M(w) = 2b* w3 (w+ 12 [w>—(1 =i Jww+ 11 [w2—(1+i Jwyw+1],
N(z) = 2bz73 (z+ 1)* [2¥ = (1 +4a, —i o) 2+ 1] [22 — (1 + }a, +i /o) 2+ 1],

u>0, v=u—%al+a,>0.

According to [4] and [3] this implies that the extremal function can only be
the left radial-slit mapping.

In order to achieve the correct factorization for the right radial-slit
mapping we observe similarly that the choice

-22 for 0 <b <32,
(28) u<{ B ¢

7—40h+24b* for $<b <1,
yields for (26)

r\2
( 1) BPww—1P W +(1+/—ww+11[w+(1—/—w)w+1]

w

=z 3z-1)?[2*+(1 ——ira2+\/v_1)z+1] [zz+(l—ia2—\/a)z+l];

u=b"?(u—ay—5a3) < -9, v,=%al+a,~—pu>4.

Thus the right radial-slit mapping is the extremal one [4], [3].

Observe that although not the best possible the limits (27) and (28)
confirm in part the results obtained from Grunsky-type estimation. In (28)
the latter limit is the one in (24).
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