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ON OPERATORS ON L,
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N. J. KALTON (COLUMBIA, MISSOURI)

In [4] the author showed that operators on the spaces L, (0, 1) for
0 < p <1 cannot be too small. Precisely, if T: L, — X is a non-zero operator
where X is an F-space, then there is a closed subspace V of L, isomorphic to
I, such that T}V is an embedding (isomorphism into X). This note*
represents an attempt to push these results a little further in the case p = 0.

It was originally the author’s belief that if T: Ly — X is a non-zero
operator, then there is a Borel subset 4 of (0, 1) such that the restriction of
T to Ly(A) (functions supported on A) is an isomorphism. This is, however,
not the case although it is true when X = L. An example in [5] shows that
it is possible to find a proper closed subspace N of L, such that the quotient
mapping does not have this property.

We therefore introduce the notion of a weakly singular operator on L,
which is defined to be an operator which fails to be an isomorphism on any
subspace L,(A), where A has positive measure. In Theorem 1 we characterize
weakly singular operators and we use this characterization to show that if X
is an ordered F-space whose positive cone is closed and T: Ly — X is
positive and weakly singular, then T = 0. This result is related to recent
work of Aliprantis and Burkinshaw [1] who show that the topology of L, is
minimal with respect to locally solid topologies on L, considered as a vector
lattice. Stated in terms of operators the result of Aliprantis and Burkinshaw
shows that a lattice isomorphism T: L, — X, where X is a locally solid
topological vector lattice, is a topological isomorphism.

We conclude by mentioning that the existence of non-zero weakly
singular operators implies that certain subspaces of L, and L, cannot be
ultrabarrelled.

Our notation is as follows. # will denote the collection of Borel subsets
of (0, 1) and 7 the sub-algebra of .4 generated by the dyadic intervals

[(k—1)-27" k-27")~(0, 1).

A will denote the usual Lebesgue measure on .4.

* Supported in part by NSF grant number MCS-7903079.
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The space L, = Ly(0, 1) consists of all real Borel functions on (0, 1),
where, as usual, functions differing only on a set of measure zero will be
identified. L, is an F-space (complete metrizable topological vector space)

when equipped with the topology of convergence in measure; this topology
is given by the F-norm
1

AU
W= f +iro™
0

A will denote the subspace of L, of all simple functions and I" the subspace
of all countably simple functions. L, is a lattice and, for f € L,, we write, as
usual, f* =sup(f,0) and f~ =sup(—f,0). If AeAB, then Ly(A) is the
subset of L, of all f supported in A and, for geL,, R,g is defined by

bl A’
Rw(r)={gm ::A

Thus R, is a projection of L, onto its subspace Lg(A).

If .4+" denotes the ideal of sets in .# of measure zero, then #/.4" is a
complete Boolean algebra. We shall refer to the lattice infimum of a
collection of sets (4,),; in #, and by this we mean the set 4 in 4 unique up
to sets of measure zero such that

A(A\A) =0, iel,
and if A(B\4,) =0 (iel), then 1(B\A4) = 0.

The term operator will mean a continuous linear map and all spaces

under consideration will be F-spaces.

Definition. An operator T: L, — X (where X is an F-space) is weakly
singular if, for every Borel subset A of (0, 1) with A(4) > 0, T|Ly(A) fails to
be an isomorphism.

Remarks. (1) If T: L, — X is weakly singular and S: X - Y is any
linear operator, then ST: L, — Y is also weakly singular. However, other
“ideal” properties of weak singularity are not clear. In particular, if S: Ly —» X
and T: L, — X are weakly singular, is S+ T weakly singular? (P 1273)

(2 f T: L,— L, is weakly singular, then T =0 (see [5]).

(3) There is a closed subspace M of L, such that the quotient map
q: L, — Ly/M is a non-zero weakly singular operator [5].

LeMMA 1. Suppose T: L, — X is an operator, ¢ > 0, and
B,={feLo: A(fl > 1) <¢}.

Suppose 0 is not in the closure of T(L,\B,). Then there is a Borel subset A of
(0, 1) such that T|Ly(A) is an isomorphism and A(A) = 1—e¢.

Proof. We may suppose X is F-normed in such a way that if f e L, and
ITf)l| €1, then fe€B,.
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Let # be the set of sequences @ = (¢,) in L, such that ) |[|Te,ll < x.
For each dc Z, let A(®) = [t: ¢,(1)—0}. Let A be the lattice infimum of
(A(®P): Pe.F) so that A(A\A(P)) = 0 for each ®eF. Then, if f,e Ly(A) and
YITSll < o, we have f, — 0 a.e. Thus it follows easily that f, € Ly(4) and Tf,
— 0. Then f, — 0 in measure.

The proof will therefore be complete if we can show that A(4) > 1—e.
Now

k
A(A) = inf {A() A(P)): BeF, i=1,2,... k}.
i=1

Fix k *end (¥':i=1,...,k) in #. For (sq,...,s)€(0, 1)* we have
(510 + ... +5,057-,€Z. Let A be the set of (t, s, ..., s)€(0, 1)**! such
that
k
lim Y s k() =0.
T =1

For fixed t, let

At = {(sh ey Sk)E(O, 1)": (ta sl’ ceey sk)EA}'

k
Then 4,(4,) = 0 unless te () A(9), and in this case 4,(4,) = 1. (Here 4, is
i=1

product Lebesgue measure on (0, 1)*) Hence
Me1(4) = l(iél A(P)).
It follows that there exists (sq, ..., 5,)€(0, 1)* such that if
¥ =(5, 00+ ... +5Ph)
then
l(/i(?')) < '1(.-61 A(P)).
Thus
A(4) = inf 2(4(9)).

We complete the proof by showing A(4(®)) > 1—c¢.
To do this let n be a normally distributed random variable with mean
zero and variance one, defined on some probability space (R, X, P); let

(n)a=, be a sequence of independent copies of n defined also in (R, X, P).
Then, for wef,

1.(0) Toll < (Ina (@)l + 1)1 T,
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and hence

] 21 I114(@) Tl dP(@) < (E(nl) +1) i ITodl.

2n

In particular,

Y lIn.(@) To,ll < oo P-ae.
n=1

Thus, if

Q,={w: ¥ Im  no) Tol <1},

n=1

then P(R2,) —»1 as m— x.
For fixed m, N, define g,, 5: (0, 1) xQ — R by

gmn (1, @) = "il m™ 1, (@) @, (1)
and let Q, v = {(t, @): lgmn(t, @) > 1}. Then
(4% P)(Qm ) = g [ ou 1, @)dP(@)dr = iP(Irrl > m(nﬁl loa (1) )dr
while, on the other hand,

1
(A x P)(@mn) = [ [ 20, »(t, @) dt dP(w)

0
1
< P@—-Q)+ [ [Xon ult, 0)dtdP(w) < P(Q—Q,)+£P(Q,).
2y O

Letting N — oo, by the dominated convergence theorem, we obtain

1 bl X
[P(Inl > m( Y 10.00%) *)dr < P(Q-Q,) +£P(Q,),
0 n=1
and hence
Ar: Z le.(N]? = x) < P(R—RQ,)+P(Q,).
n=1

Let m— x. We have ) |¢,()|* < oo except on a set of measure at most &.
Thus A(A(®)) > 1—¢ and the result follows.

We derive two immediate consequences from Lemma 1.

LeMMA 2. Suppose T: L, — X is weakly singular. Then for every me N
and ¢ > O there exists feLgy such that |f(t)) = m ae. and ||Tf|| <e.
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Proof. If the lemma were false, then for some ¢ (0 <& < 1) and meN
the inequality |f] > m ae. implied ||Tf]| >&. Pick 6 >0 so that ||f]| <&
implies ||Tf|| < 4c. Then if f¢B,_,, there exists ge L, with |lg|| <J and
Imf +g| = m a.e. Hence

IT(mf +gll >, WT(m)ll >&/2, TSl >e/2m.

Thus T(L,\B, - ;) does not have 0 as a closure point, and so there is a set 4
of measure § such that T|L,(A) is an isomorphism. This contradiction
proves the lemma.

LeMMA 3. Suppose (X,)=, is a sequence of F-spaces and w(X,) their
countable product. Suppose T: Ly — w(X,) is a linear operator given by Tf
=(T.f)%,, where T,: Lo — X,. Suppose for every n the map

S:Li»X,®..DX,

given by S, =T, ® ... ® T, is weakly singular. Then T is also weakly singular.
Proof. If T is not weakly singular, there exists a Borel set A of positive
measure such that T|L,(A) is an isomorphism. Thus, it suffices to consider

the case where T is an isomorphism. Then there is a neighborhood of zero in
w(X,) of the form

V=I(x)=1:lIxll <&, i=1,..., N}

such that VN T(Ly\B,,;) = 0. Hence, if V' X, ® ... DXy is the set
V= {x )N lIxll <g, i=1,..., N},

then V'nSy(Lo\B,,;) = ®. By Lemma 1, Sy fails to be weakly singular and
this proves Lemma 3.

THEOREM 1. Suppose T: L, — X is a linear operator. Then the following
conditions are equivalent :

(i) T is weakly singular.

(ii) There is a sequence u, with u,€ A, |u,| = n, and TR u, — O for every
Ae A

(iii) There is a sequence v, in Ly with |v,| > oo uniformly and TR, v, -0
for every Ae .

(iv) There is a sequence v,€ Ly with v, > 0 and v, — o -uniformly so that
TR, v, — 0 for every A€ A.

Proof. (i) =(ii). Let (D(n): ne N) be an enumeration of the sets of &

and consider the map T: L, - w(X) (countable product of copies of X)
given by

Tf = (TRopw fla=1-
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If Tis not weakly singular, then there exist NeN and A€ such that
SnILo(A) is an isomorphism where

SNf =(TRD(1)f’ ceey TRD(N)f)

Sy:Lo—=X,® ... ®Xy). Let A, be an atom. of the algebra of sets gen-
erated by (4, D(1), ..., D(N)), which is contained in A. Consequently, TR,
is an embedding and T is not weakly singular. We conclude that T'is weakly
singular.

Now, by Lemma 2 we may find a sequence f, € L, with |f,| = n and T¥,
— 0. Choose |u,| > n so that u,eA, u,—f, -0, and |u,| > n. Then Tu, - 0.

If Ae# and ¢ > 0, then we may choose é > 0 so that if || f]| < J, then
I|ITf]] < &. Choose De 2 so that A(A4D) < 6. Then ||R,u,—Rpu,|| < J, and
so || TR, u,— TRpu,|| <e¢. Thus

lim sup ||TR, u,l| <¢

since Tiu, -0 implies TRpu, »0. As ¢ >0 is arbitrary, the implication
(i) = (i1) is established.

(if) = (iv). First, observe that by the preceding argument it suffices to
show that TR, v, — 0 for De 2, ie. that T, — 0. Next, observe that if s is a
simple function in L, (ie. a finite linear combination of characteristic
functions), then T'(su,) - 0.

For each ¢ >0 let K(¢)= |feA: A(suppf~) <e}. Suppose feK(e).
Then for n> 2

A~ (1 +u) >0+ A(f " (1—u) > 0)<e,
and hence, for some 0,= +1, if g, = f*—f~ (1+0,u,), then g, € K (3¢). Now
Tg,=T—TO,u,f)>Tf as n- .

Hence Tfe TK(de) so that TK(e) = T(K(3¢). It now follows that TA
= TK(1) =« TK(9) for every é > 0.

Thus there exist f, e K (1/n) such that T(f,+n) — 0. Since f, € K (1/n), we
have f,—f,* =0, and so T(f,* +n) - 0. Writing v, = f,* + n we complete the
proof.

(iv) = (ii1) is immediate.

(i) = (i). For Ae# with A(A4) > 0, the sequence (R, u,),>, does not
converge to zero in Ly(A) but TR, u,— 0.

For the next theorem we shall use the term “ordered F-space” to denote
an F-space X equipped with a partial ordering < satisfying

(1) x+u < y+u whenever x <y and ueX;

(2) Ax < Ay whenever x<y and 42> 0;

(3) x<y and y < x if and only if y = x;

(4) the positive cone {x: x > 0} is closed.
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THEOREM 2. Suppose X is an ordered F-space and T: Ly — X is positive
(i.e. x =0 implies Tx = 0) and weakly singular. Then T = 0.

Proof. Suppose ueL,. Choose, by Theorem 1 (iii), a sequence v,€ L,
with v, = o0 uniformly, v, > 0, and Tv, — 0. Then, eventually, u < v,, and so
Tu < Tv,. Since the positive cone is closed, Tu <0 and, analogously,
T(—u) <0. Thus, as L, is dense in L,, we have T =0.

COROLLARY. Suppose X is an F-space and T: L, — X is a weakly singular
operator. Let P denote the positive cone of Ly,. Then T(P) is dense in T(X).

Proof. Let M = T(X) and Q = T(P). Then Q is a wedge (see [3]). Let
N=0Q0n(—-Q); N is a closed subspace of M.

Consider the quotient space M/N and let n: M — M/N be the quotient
map. Then n(Q) is a cone in M/N (ie. n(Q)n —n(Q) = {0}) and may easily
be checked to be closed. Consider the space M/N ordered by the cone n(Q)
and consider noT: L, — M/N. Then noT is weakly singular, and hence
noT = 0. Consequently, M = N and the corollary follows.

Finally, we remark that the existence of non-zero weakly singular
operators implies the failure of certain spaces to be ultrabarrelled (see [2]
and [6]). If T: L, —» X is non-zero and weakly singular, we may find v, > 0,
v,€A, v, — o uniformly so that TR, v, — 0 for all A€ #. In fact, it is easy to
see that T(v,s) — O for all countably simple functions s. Let I" be the space of
countably simple functions in Ly. If I were an ultrabarrelled subspace of L,,
then we could conclude from the Banach-Steinhaus theorem that the oper-
ators f - T(v,f) are equicontinuous. Hence, if f € L,, then

T(v,v, ' f) =0,

ie. Tf =0. Thus T =0 and we have a contradiction.
A similar argument shows that I'nL, cannot be ultrabarrelled in L, .
Of course, I' is barrelled in L, ; see [6] for further information.
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