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Absolute Norlund summability and orthogonal series

by J. MEDER (Szczecin)

1. Let }a, be a given series with the sequence of partial sums {s,}.
Let {ps} be a sequence of real constants, and let us write

Pp=po+pPrt+ ..+ Dn .
The sequence-to-sequence transformation

(1) i = an-ksk (Ps # 0)

k-O ‘
defines the sequence {#,} of Norlund means of the sequence {s,} generated
by the sequence {ps}. The transforms are ocalled the Norlund means
of the sequence {s,} or of the geries D as.

The geries a5 i8 said to be (N, ps)-summable to the sum ¢ if limt?,
exists and equals s. Moreover, it is said to be absolutely (N, pa)- summable,
or shortly |N, pa|-summable, if the sequence {t»} is of bounded. variation,
i.e. if the series ), [ta—ts~1| i8 convergent.

Obviously, |N, pa|-summability implies (N, ps)-summability. How-
ever, not conversely. There exist certain series (I, ps)-summable but
not |N, ps|-summable (*).

If {px} is non-negative, then

Pn
2 =0
is a necessary and sufficient condition for the regularity of the method
of summation (N, pa).

(*) This proves the folloving example by L. Mc. FFadden (Absolute Norlund sum-
mabilily, Duke Math. Journ. 9(1942), pp. 168-207). Let p,=1, n=10,1,..., and leb

ap = (-1, n=0,1,.. Then
. { 1/(k+1) for £k even,
" ,

0 - for L odd.

Clearly ¢, converges to zero, but
1 1/(k+1) for ¥ even,

ty — lp1]| =
[t = e Y for I odd.

[ =]
Hence, ) |t —l:-1| diverges.
k=1
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The object of this note is to examine the |N, p,|-summability of
orthogonal series of the form

(3) D, anen(®)

where {pn(x)} denotes an arbitrary orthonormal system defined in the
interval ¢0,1), and {as} e B, i.e.

==

(4) 2 ap < +o0.
=
In the sequel we shall restrict ourselves mainly to the special classes
M® of Norlund means: ,
A sequence {p,} will be said to belong to the class M? with
—-1<a<0, if

(i) Po>0 and PpPa<0 for n=1,2,..,
(ii) P <Po< i <P <Pt < wvey
(i) lim MPr=Pas) g

n—oo Pn

A sequence {p,} will be said to belong to the class M, with a > 0, if

(1) 0<Prn1<Pn O 0<Pp<Ppy1 ((n=0,1,2,..),
(33) " Pot Pt tPa=Py/+oo,
(ij) limn(pﬂ—pﬂ—l) = a—1.

00 P

In particular, if instead of condition (jjj) we shall assume the con-
dition lim nps/Ps = a, retaining conditions (j) and (jj), then {p,} will
n~»00

be said to belong to the class M°

The theorems presented below generalize the corresponding results
due to K. Tandori [7] and L. Leindler (see [2], Satz I, p. 244 and Satz II,
P. 263) concerning the |C, a|-summability (with a> % and —1 < a< %,
a # 0) of orthogonal series. They establish at the same time an analogue
to a result of F. Méricz [5] concerning the absolute Riesz-summability
of orthogonal series. The idea and the proofs themselves of the theorems
presented here are similar to F. Méricz’s results.

-LEMMA 1. Let {rs(z)} be the Rademacher-system. Then for every se-
quence {a,} of real coefficients we have the inequality

n n 1/2
C(E) f’ Z.am(w)ldw =1 a?,l (n=DN,N+1,..),
E k=N k=N
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where E (C <0, 1)) denotes an arbitrary set of posilive measure and N is
a positive integer dependent only on E.

This lemma is known (see [6], Hilfsatz IV, pp. 31-32).

LEMMA 2. Lét {ps) e M° with a>—1 and a #0. Then ps/Pn 7 as
—1<a<0, and pa/Pu™ as a> 0, for sufficiently large n.

Proof. Let {pa.} e M% with —1 < @ < 0. First we sha,]l'give some
properties of the sequence {p,} belonging to this class.

(a) If Pp= po+p1+...+pn, then {Pn} is a pos1t1ve, decreaging
and null-convergent sequence.

In fact, since p, < 0 for n =1, 2, ..., we have

-Pﬂ.—1>-Pn—1+_pn=Pn ('n=1 2 )

Considering that Pn™ and applying the Stolz lemma, we find that

NPa
1
v Pn

=a<0.

Hence P, > 0 for n > N, where N denotes a positive integer sufficiently
large. Suppose then that P, <0 for 1 < n < N. Then we should have
Py > Py > P41 > 0, which would imply P, > 0, contrary to hypothesis.
Arguing as in the proof of a lemma (see [4], Lemma 3, p. 249), we easily
state that {P,} is a null-convergent sequence.

(b) pa/Py /" for sufficiently large =.
This is evident because
Pn  Pn— Pn ["'(pn"‘_pn—l) "Pn .

o T —— —————r ——— —

.P Pn 1 n.P, n—-1
(¢) Let Wy = pp_1Ppn—0nPr-y a0d Dys1/Prn,/. Then Walps\.

In fact,
Wais _ Pnp_p Prap _p W
Pr+1 Prn Pu Pn
@ lim 72 = L pecouse
n—-00 pn a
Wa_ y_Pn n@—pas)
P-ﬁ NPn Pa

Remark. Property (d) is also valid if {ps}e M°, with a> 0. Now
let {pa) eM", with a> 0. If 0 < py\, then
1
Pu-1/Pn1— Do/ Py = PP (Pr-1Pa—PnPrnor) > — P (PnPn PnPn) =0
for every n. If 0 < p, 7, then our statement is evident because

Pp [”'Pu (Pn—Pn—l)] ’

Pny|Pr-1—Dn/Pp=—— |5 —

1%
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and because the expression in the square brackets tending to 1/a is pos-
itive for sufficiently large n.

Remark. If we assume only that 0 < p,/" and Ppp+1/Pa> or that
{pa} i8 concave, then p,/P,~ for every n. In fact, considering the ex-
pression W,, which is positive for » = 1, let us suppose that W, > 0
for a given n # 1. If {pa} is concave, then

Wog1 = _'pnP'nH—'_'PnHP = PnPrns1— PrlPu+1— Dn)
> 19721,— (pn—ph—1)Pu= Pn-1 Pn_‘Pn-Pn—l =W,>0.

If Puya/pn, then

Wat1 = PuPrri— Putr1 Pn = Dn (Pn — p;;-’-l Pp_a

n

DPn Dn Pri1
P, — P, | =" W,> Wp>0.
>,pn( n Pas n l) P n Pn n
Applying complete induction, we infer the validity of our statement
in. both cases of monotony of the sequence {p,}. At the same time we
have proved that {W,} and {Wy/p.}, respectively, are increasing sequences
in the case under examination.

LeMMA 3. If {pa}e M, a>1, then

-P n—{nfda] = :_1_

for sufficiently large n.

Proof. Let r be a positive integer such that 2" ' < a < 2". Since
a>1, then 0 < p, . Hence

P, n—[n/4a] ~ P n—[njertl) =1 1

-Pn -P-n. - ITn (pn—[-n12'+1]+1 + . +Pn)
>1— | Po 1 2P
27| P, 2a P, ‘

whence Lemma 3 follows because the last expression is greater than
1/4 for sufficiently large n.

LEMMA 4. If {pn}e M, with a>—1 and o %0, then

() Oy (0) kepn -k < lpn—kPn_PnPn—ki < Cola) kpupn—i (%)
m=N,N41,.;k=1,2,..,n),

where Ci(a) and Cy(a) denote positive constants dependent, in general, on «,
and N denotes a natural number, which will be defined in the proof.

(%) The sign of the absolute value can be omitted as a > 0.
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Proof. First we shall prove the second inequality of estimation (5).
On writing '

Wark=PnkPpn—PnPu_yr (n=1,2,..; k=1,2,..,n),

we have
Py Pa Py Pn Proiri Po
Wy = n— (_’.‘__ n k)= D [(_l"_ n 1) ( = k)]
nk = PnDn—k Pn Pk PoPn—t Pn Pn- et n—k+1  Pn—k
_ Wn Wn—k+1 ]
PnPn—k [Pnpn—1 + ... +Pn—k+1?ﬂ—k .

In virtue'of property (d), we have

Hence it follows that
|Wn.k

Passing to the proof of the firgt inequality of (5), we shall first examine
the case —1 < a < 0.

Let Wn< 0 and |Wa,|/ps> 1/2|a| for n > N;, where %, denotes
a natural number gufficiently large. If n—%k<41 > N,, then

< Cyla)kpppn-r (k=1,2,...,m;,n=1,2,..).

Wa | W —kes1] )
W _— _ I__ﬂ__ cas ——_—+—
[Wail = Prdu-s (ﬁnm—l T Binaa
w. Wi—
S PaBas (] 2"_| SRS Iﬂz—kﬂl)
Pn— Prn—k

and
1
| Woa,k| > '2_|a_|kpupn—k (k=1,2,.,n; n=N,N,+1, ...).

If n—k+41 <Ny, then |p,_x|> |pn,]. Hence

P, P,,_k) ( Py, Do )

—— | >k — — .

[Bal ~ Toneil) ” PP ] wlpai]
Considering that the expression in the last brackets tending to 1/|a| as

n—>oo is greater than 1/2]a| for n > N,, we find that

IW‘n,kl > DPuPr—k (

1
IWnlk|>mkpn‘pn_k fOI‘ ﬂ>N=maX(N1,.N2),
which ends the proof in the case examined.
Now let {ps} e M", with a > 0. If 0 < pp>, then

Wﬂ,k = _p'n.—k-Pn — Pk P = pfn—k(Pn—-Pn—k)
= Pn—tPr—t+1+ Pa—pt2+ ... + Dn) > kPaPr—1
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whence it follows that the first inequality of (5) holds for n =1, 2, ..,

E=1,2,..,n
If 0 <ps/, then we can write
Wa Wo-
Wn,k > PaPu—k ( + .ot 2” k+‘1>
Pn Prn—k+1

> %kpnpn_k for n—k+1>N,,

where N, denotes a natural number sufficiently large and k=1, 2, ...,
(n—N,). ¥ n—k+1<N,, then denoting by N, a natural number
sueh that
ﬁ—lﬂ>i for n>N,,
npan N~ 2a
we can write
P, P, N. 1
Wk > Pn?n—k [‘-,'E::"' (n— k+1)] = kpnDPn—r (,’F:l— Wl) > % kpapn—r
for » > N, and k=n»—N,+1, n—N,+2,...,n
Taking ¥ = max(N,, ¥,), we find that

Wae > C(a)keppPn—r (E=1,2,..,n; n=N,N41, ...),

with Oj(a) = 1/2a.

Thus we have proved the first inequality of (5) in both cases of the
sequence {p»}, which, together with the first part of the proof, com-
pletes the proof of Lemma 4.

Remark. If 0 < p,/ and if {p,} i3 concave or if p,i1/Pa’\, then
the first inequality of (5) holds also for every natural number n. In fact,
we can write

W 'W W. W —_
W = pupa_ [( n _u,_l) LI ———"—ﬁ‘—)]
mk = PnPn—k PnPn-r + +P¢+1P~: - iPi-1 T +Pn—k+1pn—k ’

where (4+1) denotes the least natural number greater than N, defined
above. According to the remark put at the end of Lemma 2, the se-
quences {W,} and {Wa/ps} are increasing if {p,} is concave or if Pp41/DPn\,
respectively. Therefore the second expression appearing in the last square
brackets is greater than

1 1
! (p’lp{—l T + _pn—k+1_'pn—lc)

1
y 2 (ﬁ T “'+pu—k) '

or than
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respectively. Hence we get

Waie > PnPri [n2
and ultimately .
W“‘k > 0'1(a)7cp,,p,,_k (n = 1,2, e k= 1, 2, .y ) )

where-

Ci(a) = min (1 Do ) .
2'1 le
Now, putting

am+l

m-—-{ 5‘ ak (m=0,1,2,.),.

k=2’"— +1

we can formulate the following theorem.

THEOREM 1. Let {pa} e M°, with a> }. In order that sertes (3) be
|V, pa|-summable in the interval <0, 1) almost everywhere for every ortho-
normal system {ga(x)}, the condition

an
(6) D Ap < +oo
m=0
is necessary and sufficient.

Proof. Sufficiency. Let {ps} e M, with a> 4. We can write
(omitting the argument z for the sake of brevity)

ln—1tp—1 = PnP”_IZ(Pn—kP — -n—-kpn) arPr -

Applying the Schwaiz inequa,lity, we obtain with the aid of Lemma 4
the following estimate:

[e=] 1 =°) oM+l 1
3
l J |f”— Tn— 1|dx* \ \ ‘ 'tn— by — lld-r
n=4 u m=0 74-2m+10
om+l 1
O ! * 11/2
SN Ny g
me=0 n=2m 410
00 2m+1
. Q) B 1/2
= 0 (a) L {2"‘ S —F Z k“pn_kaz}
m=(Q 'n—2"'+1 e e

It {ps} e M", a > }, then according to a lemma of the author (see [3],
Lemma 3, pp. 232-233) the sequence {P3/n} is increasing for sufficiently
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large n and tends to infinity. Applying the Stolz lemma, we get the
relation

* 2
lim — 2 R
@) P P T Bl
In view of this relation and by condition (5) the proof proceeds after
the following estimate:
o0 2m+1 1

2 2, [in—t-iis

me=0 A=2m-+1 0

) gm+l  gn min@it,n)

—ow Dl X Y D Kkl

m=0 n=2m41 1=0 k=2l41
0 m gl+1 gm+l
\NT| 1 2 2 s |2
—0@ D)l 3 D) wak pn_k}
me=0 2" 720 k=241 n=max@n41,k)

) m m ol+1
1 2 N e
0w L S S S )
m=0 k=1 1=0 k=2l41
o0 m al+l

=0(“)2{2%2 2 7 ak}m

m=0 T=0 k—2l+1

—O(a)Z ZZ’A;_ a)Z2AZ—-=O 2A,<+oo.

m-o =0 m=l { =0

Necessity. It suffices to prove the following statement:
If the Rademacher series

Ean'rn(m)
=0
i8 |N, pa|-summable, with {p,} e M°, a >}, on a set of positive measure,
then condition (6) holds.
In fact, in virtue of the Egoroff theorem there exist a measurable
get P, with |E|> 0, and a positive constant M such that

/E: ltﬂ(m)—tn—L(m)l <M

n=2

for every # ¢ # and that

(8) D) [ @)= tas(@)|do < M |E
n=2 F
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We can write (omitting the argument x)

le=1

Wﬂ k
— e = (by—lp—1)— 2, ATy
=N ‘P”'Pﬂ—l ‘P n—1 !

where N denotes a positive integer suitably chosen in view of Lem-
mas 1-4. Hence

oo N-1
oonl> Shtui= S| S
1%’2Pﬂ' "'—1 n=N I " ll n=N =] P P" 1 i

The last series is of course convergent. Therefore, without loss of gen-
erality, we may suppose that e =0 for kt=1,2,.., N—-1. Now,
applying Lemmas 1 and 4, we obtain after (8) and (9) the fo]lowmg estimate:

M|E|C(E) >Zo (E) [ }21, k. lak'rk(:c)‘dm

n=N

0

E { \j pﬁé_ ai}u > O3 A\J { v k pn—ka‘i}uz .

n=N k=N n=N "' k=N
In order to estimate the last expression we ghall distinguish two cases:
(1) 0 < s\ and (2) 0 < pa .

Let 0 < pn\\. Denoting by m, the least positive integer # satisfying
the inequality 2°4-1 > N, and considering that p,- = p, (k= 0,1, 2, ...),
we find that

o

211’::;{270?“_ }1/2 12702 2|1 032;; le }1/2

n=N """ k=N

om+l
1 1/2
SIPELE
'rn=m.,+1 n= 2"‘+1 k=N
g+l 2m+n
Y [ 2‘1"’ _];
> Gy > ? K akl id n?
mnmo k=2"‘+1 n=0m+ly]
=] am+l
' 1 |' Lo 0|2
>032/ m_H’l \ k 1 > CaZ.Am,
m=my k= 27”+1

where O is a suitably chosen constant. This and the last but one esti-
mate imply condition (6).

Now let 0 < p» 7, and let # be a positive integer such that 2" " <
< a < 2". Further, let m, denote the least positive integer z fulfilling
the inequality 2°7""% > N.
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With the aid of Lemmas 2 and 3 we can write

\ -’p'n . \ kp‘?l—kagk} > .p'n' \ pﬂ, sz J

n—
Zupt |l Ly 2oy po
n=y P,,, k=N n=2Mp+1 ‘P‘” k=N P"b*

0 2 [n/z_rﬂ]
\NT o Paopren [ \Y el
z P, . Y%

2
n=9Mp41 = P k=N
o0 [1}/2!’"’1]

1\ 20"
2 mly Ko

p—T-1 pm+l

SICE

Collecting the above results, we infer the necessity of condition (6). This
ends the proof of Theorem 1.

2. In this section we shall occupy ourselves with the case of {pa)
e M*, —1 < a< }, a#0, giving certain conditions for absolute (N, pn)-
summability. The case a = 4 proves more difficult and requires addi-
tional assumptions about the sequence {pa4}.

First we remark that

hmn(p“ —1) 2(1—a)>1 a8 —l<a<$ a#0,

n—>00 pn+1

Whence we infer by the Raabe criterion the convergence of the series
Z pa. Since 0 < piN\, we have by a well-known theorem ]Jm npy, = 0,
ne~=0

Therefore hmn/Pn = co, whence we gel the rela,tlon

(10) Zm (~l<a< a#0).
P
At once we state that in this case the sequence {n/P3} is increasing for n
sufficiently large and tends to infinity.
THEOREM 2. Let {ps} e M*, —1 < a < 4, a # 0. In order that series (3)
be |N, pa|-summable in the interval {0,1)> almost everywhere for every
orthonormal system {pn(x)}, the condition

om+1

?9-1 2m12 \1‘_
\ Ap < 00 (Am_lz GA.J

‘:—l _sz.
M=l N4l
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18 sufficient; simultaneously, it is necessary if {an} 18 a monotone sequence (*)
of coefficients and if the summability is required for all orthonormal systems
{pn(®)}.

Proof. Sufficiency. Let —1 < a< 4. In view of the estimate

deduced in the proof of Theorem 1, and according to relation (10), we
can write

o ST R S P
S flaiiaeom Sde 5757
n=g 0 n=2m4] l==o k-2'+1
00 . 21n+1
'1 1 'T 1/2
con (S S S e 3
me=2 ""z 0 km2l4+1 n-muxtzm+1 )
a n—2 amti e
[ N ) \ )
= ()(1)(2' ml [2‘"24 - ¥m-N 42 + > \ 9% 42 2’ :pi_gm_l]} )
m=2 2" P; 2m z N=2M41
= omie 3 mi2
oS e St 5o S e
m=g Pym 2 M=l =g

Necessity. Under the assumptions of Theorem 2 relation (10)

holds and the sequence {n/Pp} is increasing for n sufficiently large.
Therefore

00 n
\ \T.» s
M|E|C(E) > Cya) 2<, IP:! {2_/ ,k'ﬁfs-kai-J'
n=) 'P“ k=N

00 om+1
' \! N\ IPn| I\ k g |12
] a
> (ila) Ly La pr | o kf
Mm=ing+1 n=2Mm+1 N =N
gm+1 om+g
A 5 |22 @)
= (;'2 \ l Z iv 2m-|1 kakl ‘2/ .__Hn_P"
m-=mo ] =2m+1 n=2m+lyy

Qm

\1 tgun2™ T [ \1 2|V

k
i 0"’+2Pm+, |H J
m=mg k=0

> (y(a)

M+

\1 2(m+1)l2) l \"‘1

—
m=me Pam k=2m4+14]

l 1/2

> Cyla) |

where C,(a)-C,(a) are suitably chosen constants.

(*) positive and non-inereasing.
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3. We consider here the case of {p} ¢ M° with a« = }. Examining
this case without any additional assumptions about the sequence {p.},
we state the relation
(11) log = ~logn .

Pn

If {ps}, in addition to satisfying the last assumption, is such that

(12) [1 ~ an"]log'n 0 and [1 — 2”—(1‘""—‘_—?1)] logn—0,
P, Pn
then

n

n 2
13 — ~logn.
(13) P );..o; k g

In fact, applying the Stolz lemma and the first relation of (12), we state that
. lognpa

lim —=—== =
n—co lOglogn

whence it follows that for sufficiently large n

lognpi
loglogn

?

> —

holds. The series D, p} is then. djw}ergent. Applying the Stolz lemma to

k=0
Pilogn |\ ,
POBT ) Nt

k=0
we state, in view of the first relation of (12), relation (13).

In virtue of relation (13), we get the following theorem:

THEOREM 3. Let {ps} € M°, with a = }, and moreover let {pn} satisfy con-
ditions (12). Then in order that series (3) be |N, DPn|-summable in the interval
<0,1> almost everywhere for every orthonormal system {pa(x)}, the condition

j‘lfﬁ-‘im< + oo

mel
8 sufficient; stmultaneously, it is necessary if {as} is a monotone sequence (1)
of coefficients and if the summability is required for all systems {pn(x)}.

Proof.Sufficiency. Under the hypothesis of the theorem, we can write

the expression

o 1 = m alt+1
m 1/2

Zf Itn“'tn—lldm= 0(")2{27”@ v 2 kzai}
nm=2 0 M=l =0 k=2141
0 m ol+1

m 1/2

=o@ {5 > D af

m=1 2 l1=0 ke=2l41

(*) positive and non-inéreasing.
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Z Zz’A,— a)z 94 2';:

Mmeal I=1 mm=al]

a)j]/i.41< o0,

Hence follows the sufficiency of Theorem 3.
Necessity. Arguing as in the proof of Theorem 1, we can write
1/2
M| 0(B) > O(a) D, &1 {Z ¥phoad)

=N "’ =N
=" gm+1 u

\ | 2 ]1I2 n
> 02 2., Y nPn A_J pn—k[ a’llmz
M=mp n=21n+1 JLmom 1
am
\ [ \1 2‘11 M2 mlz
> Cz(a) ” 2"‘1’2 ]_ka 2 Qym
m=mo

In virtue of relation (13) the last expression is less than

Cy(a) Z Ymdp = Cyla Z]/mAm,

m=mg M=l

which completes the proof of Theorem 3.
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